YL
Yaoyao Li
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
884
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Morphological diversity of single neurons in molecularly defined cell types

Hanchuan Peng et al.Oct 6, 2021
Abstract Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types 1,2 , yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.
0
Citation274
0
Save
113

Cellular Anatomy of the Mouse Primary Motor Cortex

Rodrigo Muñoz-Castañeda et al.Oct 2, 2020
Abstract An essential step toward understanding brain function is to establish a cellular-resolution structural framework upon which multi-scale and multi-modal information spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, through a collaborative effort from the Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based description of one brain structure - the primary motor cortex upper limb area (MOp-ul) of the mouse. Applying state-of-the-art labeling, imaging, computational, and neuroinformatics tools, we delineated the MOp-ul within the Mouse Brain 3D Common Coordinate Framework (CCF). We defined over two dozen MOp-ul projection neuron (PN) types by their anterograde targets; the spatial distribution of their somata defines 11 cortical sublayers, a significant refinement of the classic notion of cortical laminar organization. We further combine multiple complementary tracing methods (classic tract tracing, cell type-based anterograde, retrograde, and transsynaptic viral tracing, high-throughput BARseq, and complete single cell reconstruction) to systematically chart cell type-based MOp input-output streams. As PNs link distant brain regions at synapses as well as host cellular gene expression, our construction of a PN type resolution MOp-ul wiring diagram will facilitate an integrated analysis of motor control circuitry across the molecular, cellular, and systems levels. This work further provides a roadmap towards a cellular resolution description of mammalian brain architecture.
113
Citation30
0
Save
0

Connecting single-cell transcriptomes to projectomes in mouse visual cortex

Staci Sorensen et al.Nov 27, 2023
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.
0
Citation2
0
Save
0

Complete single neuron reconstruction reveals morphological diversity in molecularly defined claustral and cortical neuron types

Hanchuan Peng et al.Jun 20, 2019
Ever since the seminal findings of Ramon y Cajal, dendritic and axonal morphology has been recognized as a defining feature of neuronal types and their connectivity. Yet our knowledge about the diversity of neuronal morphology, in particular its distant axonal projections, is still extremely limited. To systematically obtain single neuron full morphology on a brain-wide scale in mice, we established a pipeline that encompasses five major components: sparse labeling, whole-brain imaging, reconstruction, registration, and classification. We achieved sparse, robust and consistent fluorescent labeling of a wide range of neuronal types across the mouse brain in an efficient way by combining transgenic or viral Cre delivery with novel transgenic reporter lines, and generated a large set of high-resolution whole-brain fluorescent imaging datasets containing thousands of reconstructable neurons using the fluorescence micro-optical sectioning tomography (fMOST) system. We developed a set of software tools based on the visualization and analysis suite, Vaa3D, for large-volume image data processing and computation-assisted morphological reconstruction. In a proof-of-principle case, we reconstructed full morphologies of 96 neurons from the claustrum and cortex that belong to a single transcriptomically-defined neuronal subclass. We developed a data-driven clustering approach to classify them into multiple morphological and projection types, suggesting that these neurons work in a targeted and coordinated manner to process cortical information. Imaging data and the new computational reconstruction tools are publicly available to enable community-based efforts towards large-scale full morphology reconstruction of neurons throughout the entire mouse brain.