LK
Lisa Kim
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
1,287
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Classification of electrophysiological and morphological neuron types in the mouse visual cortex

Nathan Gouwens et al.Jun 17, 2019
Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To systematically profile morpho-electric properties of mammalian neurons, we established a single-cell characterization pipeline using standardized patch-clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly accessible online database, the Allen Cell Types Database, to display these datasets. Intrinsic physiological properties were measured from 1,938 neurons from the adult laboratory mouse visual cortex, morphological properties were measured from 461 reconstructed neurons, and 452 neurons had both measurements available. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We established a taxonomy of morphologically and electrophysiologically defined cell types for this region of the cortex, with 17 electrophysiological types, 38 morphological types and 46 morpho-electric types. There was good correspondence with previously defined transcriptomic cell types and subclasses using the same transgenic mouse lines. Gouwens et al. established a morpho-electrical taxonomy of cell types for the mouse visual cortex via unsupervised clustering analysis of multiple quantitative features from 1,938 neurons available online at the Allen Cell Types Database.
0
Citation401
0
Save
0
0

Human neocortical expansion involves glutamatergic neuron diversification

Jim Berg et al.Oct 6, 2021
Abstract The neocortex is disproportionately expanded in human compared with mouse 1,2 , both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth 3 . Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer’s disease 4,5 . Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.
0
Citation230
0
Save
22

Local Connectivity and Synaptic Dynamics in Mouse and Human Neocortex

Luke Campagnola et al.Apr 1, 2021
Abstract To elucidate cortical microcircuit structure and synaptic properties we present a unique, extensive, and public synaptic physiology dataset and analysis platform. Through its application, we reveal principles that relate cell type to synapse properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Despite these associations, synaptic properties are heterogeneous in most subclass to subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, while the strength axis accounts for significant heterogeneity within the subclass. In human cortex, excitatory to excitatory synapse dynamics are distinct from those in mouse and short-term plasticity varies with depth across layers 2 and 3. With a novel connectivity analysis that enables fair comparisons between circuit elements, we find that intralaminar connection probability among cell subclasses exhibits a strong layer dependence.These and other findings combined with the analysis platform create new opportunities for the neuroscience community to advance our understanding of cortical microcircuits.
22
Citation12
0
Save
21

Signature morpho-electric properties of diverse GABAergic interneurons in the human neocortex

Brian Lee et al.Nov 9, 2022
Abstract Human cortical interneurons have been challenging to study due to high diversity and lack of mature brain tissue platforms and genetic targeting tools. We employed rapid GABAergic neuron viral labeling plus unbiased Patch-seq sampling in brain slices to define the signature morpho-electric properties of GABAergic neurons in the human neocortex. Viral targeting greatly facilitated sampling of the SST subclass, including primate specialized double bouquet cells which mapped to two SST transcriptomic types. Multimodal analysis uncovered an SST neuron type with properties inconsistent with original subclass assignment; we instead propose reclassification into PVALB subclass. Our findings provide novel insights about functional properties of human cortical GABAergic neuron subclasses and types and highlight the essential role of multimodal annotation for refinement of emerging transcriptomic cell type taxonomies. One Sentence Summary Viral genetic labeling of GABAergic neurons in human ex vivo brain slices paired with Patch-seq recording yields an in-depth functional annotation of human cortical interneuron subclasses and types and highlights the essential role of multimodal functional annotation for refinement of emerging transcriptomic cell type taxonomies.
21
Citation7
0
Save
0

Connecting single-cell transcriptomes to projectomes in mouse visual cortex

Staci Sorensen et al.Nov 27, 2023
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.
0
Citation2
0
Save
1

Scaled, high fidelity electrophysiological, morphological, and transcriptomic cell characterization

Brian Lee et al.Nov 5, 2020
The Patch-seq approach is a powerful variation of the standard patch clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at a scale and quality that can be integrated with high-throughput dissociated cell transcriptomic data, we have optimized the technique by identifying and refining key factors that contribute to the efficient collection of high-quality data. To rapidly generate high-quality electrophysiology data, we developed patch clamp electrophysiology software with analysis functions specifically designed to automate acquisition with online quality control. We recognized a substantial improvement in transcriptomic data quality when the nucleus was extracted following the recording. For morphology success, the importance of maximizing the neuron’s membrane integrity during the extraction of the nucleus was much more critical to success than varying the duration of the electrophysiology recording. We compiled the lab protocol with the analysis and acquisition software at https://github.com/AllenInstitute/patchseqtools . This resource can be used by individual labs to generate Patch-seq data across diverse mammalian species and that is compatible with recent large-scale publicly available Allen Institute Patch-seq datasets.
Load More