Myeloid differentiation factor-88 (MyD88) is a key adaptor of the toll-like receptor (TLR) signaling pathway and plays a crucial role in innate immune signal transduction in animals. However, the MyD88-mediated signal transduction mechanism in shellfish has not been well studied. In this study, a new MyD88 gene, CfMyD88-2, was identified in the Zhikong scallop, Chlamys farreri. The 1779 bp long open reading frame encodes 592 amino acids. The N-terminus of CfMyD88-2 contains a conserved death domain (DD), followed by a TIR (TLR/Interleukin-1 Receptor) domain. The results of the multi-sequence comparison showed that the TIR domain sequences were highly conserved. Phylogenetic analysis revealed that CfMyD88-2 was first associated with Mizuhopecten yessoensis MyD88-4 and Argopecten irradians MyD88-4. CfMyD88-2 mRNA was expressed in all scallop tissues, as detected by qRT-PCR, and the expression level was the highest in the mantle and hepatopancreas. In addition, CfMyD88-2 mRNA expression significantly increased after pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharide, peptidoglycan, or polyinosinic-polycytidylic acid) stimulation. The results of the co-immunoprecipitation experiments in HEK293T cells showed that both CfMyD88-1 and CfMyD88-2 interacted with the TLR protein of scallops, suggesting the existence of more than one functional TLR-MyD88 signaling axis in scallops. Dual luciferase reporter gene assays indicated that the overexpressed CfMyD88-2 in HEK293T cells activated interferon (IFN) α, IFN-β, IFN-γ, and NF-κB reporter genes, indicating that the protein has multiple functions. The results of the subcellular localization experiment uncovered that CfMyD88-2 was mainly localized in the cytoplasm of human cells. In summary, the novel identified CfMyD88-2 can respond to the challenge of PAMPs, participate in TLR immune signaling, and may activate downstream effector genes such as NF-κB gene. These research results will be useful in advancing the theory of innate immunity in invertebrates and provide a reference for the selection of disease-resistant scallops in the future.