TS
Torsten Sattler
Author with expertise in Simultaneous Localization and Mapping
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(47% Open Access)
Cited by:
5,582
h-index:
52
/
i10-index:
103
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization

Torsten Sattler et al.Sep 20, 2016
Accurately determining the position and orientation from which an image was taken, i.e., computing the camera pose, is a fundamental step in many Computer Vision applications. The pose can be recovered from 2D-3D matches between 2D image positions and points in a 3D model of the scene. Recent advances in Structure-from-Motion allow us to reconstruct large scenes and thus create the need for image-based localization methods that efficiently handle large-scale 3D models while still being effective, i.e., while localizing as many images as possible. This paper presents an approach for large scale image-based localization that is both efficient and effective. At the core of our approach is a novel prioritized matching step that enables us to first consider features more likely to yield 2D-to-3D matches and to terminate the correspondence search as soon as enough matches have been found. Matches initially lost due to quantization are efficiently recovered by integrating 3D-to-2D search. We show how visibility information from the reconstruction process can be used to improve the efficiency of our approach. We evaluate the performance of our method through extensive experiments and demonstrate that it offers the best combination of efficiency and effectiveness among current state-of-the-art approaches for localization.
0

Understanding the Limitations of CNN-Based Absolute Camera Pose Regression

Torsten Sattler et al.Jun 1, 2019
Visual localization is the task of accurate camera pose estimation in a known scene. It is a key problem in computer vision and robotics, with applications including self-driving cars, Structure-from-Motion, SLAM, and Mixed Reality. Traditionally, the localization problem has been tackled using 3D geometry. Recently, end-to-end approaches based on convolutional neural networks have become popular. These methods learn to directly regress the camera pose from an input image. However, they do not achieve the same level of pose accuracy as 3D structure-based methods. To understand this behavior, we develop a theoretical model for camera pose regression. We use our model to predict failure cases for pose regression techniques and verify our predictions through experiments. We furthermore use our model to show that pose regression is more closely related to pose approximation via image retrieval than to accurate pose estimation via 3D structure. A key result is that current approaches do not consistently outperform a handcrafted image retrieval baseline. This clearly shows that additional research is needed before pose regression algorithms are ready to compete with structure-based methods.
0
Paper
Citation333
0
Save
0

Comparative Evaluation of Hand-Crafted and Learned Local Features

Johannes Schönberger et al.Jul 1, 2017
Matching local image descriptors is a key step in many computer vision applications. For more than a decade, hand-crafted descriptors such as SIFT have been used for this task. Recently, multiple new descriptors learned from data have been proposed and shown to improve on SIFT in terms of discriminative power. This paper is dedicated to an extensive experimental evaluation of learned local features to establish a single evaluation protocol that ensures comparable results. In terms of matching performance, we evaluate the different descriptors regarding standard criteria. However, considering matching performance in isolation only provides an incomplete measure of a descriptors quality. For example, finding additional correct matches between similar images does not necessarily lead to a better performance when trying to match images under extreme viewpoint or illumination changes. Besides pure descriptor matching, we thus also evaluate the different descriptors in the context of image-based reconstruction. This enables us to study the descriptor performance on a set of more practical criteria including image retrieval, the ability to register images under strong viewpoint and illumination changes, and the accuracy and completeness of the reconstructed cameras and scenes. To facilitate future research, the full evaluation pipeline is made publicly available.
Load More