SK
Stephanie Krueger
Author with expertise in Sweeteners' Taste and Impact on Health
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
6
h-index:
7
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The genetic basis of novel trait gain in walking fish

Amy Herbert et al.Oct 14, 2023
Summary A major goal in biology is to understand how organisms evolve novel traits. Multiple studies have identified genes contributing to regressive evolution, the loss of structures that existed in a recent ancestor. However, fewer examples exist for genes underlying constructive evolution, the gain of novel structures and capabilities in lineages that previously lacked them. Sea robins are fish that have evolved enlarged pectoral fins, six mobile locomotory fin rays (legs) and six novel macroscopic lobes in the central nervous system (CNS) that innervate the corresponding legs. Here, we establish successful husbandry and use a combination of transcriptomics, CRISPR-Cas9 editing, and behavioral assays to identify key transcription factors that are required for leg formation and function in sea robins. We also generate hybrids between two sea robin species with distinct leg morphologies and use allele-specific expression analysis and gene editing to explore the genetic basis of species-specific trait diversity, including a novel sensory gain of function. Collectively, our study establishes sea robins as a new model for studying the genetic basis of novel organ formation, and demonstrates a crucial role for the conserved limb gene tbx3a in the evolution of chemosensory legs in walking fish.
48

Evolution of novel sensory organs in fish with legs

Corey Allard et al.Jan 1, 2023
How do animals evolve new traits? Sea robins are unusual 9walking9 fishes that use leg-like appendages to navigate the seafloor. Here, we show that legs are bona fide sense organs that mediate the unique ability to localize and uncover buried prey. We then probe the developmental and physiological basis of these novel sense organs as a striking example of a major trait gain in evolution. We find certain sea robin species have legs with unique end-organs called papillae that mediate enhanced mechanical and chemical sensitivity to enable predatory digging behavior. Papillae exhibit dense innervation from touch-sensitive neurons, noncanonical epithelial taste receptors, and chemical sensitivity that drives predatory digging behavior. Using a combination of developmental analyses, crosses between species with and without papillae, and interspecies comparisons of sea robins from around the world, we demonstrate that papillae represent a key evolutionary innovation associated with behavioral niche expansion on the seafloor. These discoveries provide a conceptual framework for understanding how molecular, cellular, and tissue-scale adaptations integrate to produce novel organismic traits and behavior.
48
0
Save