EK
Edward Keedwell
Author with expertise in Design and Management of Water Distribution Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
770
h-index:
25
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions

Holger Maier et al.Oct 4, 2014
The development and application of evolutionary algorithms (EAs) and other metaheuristics for the optimisation of water resources systems has been an active research field for over two decades. Research to date has emphasized algorithmic improvements and individual applications in specific areas (e.g. model calibration, water distribution systems, groundwater management, river-basin planning and management, etc.). However, there has been limited synthesis between shared problem traits, common EA challenges, and needed advances across major applications. This paper clarifies the current status and future research directions for better solving key water resources problems using EAs. Advances in understanding fitness landscape properties and their effects on algorithm performance are critical. Future EA-based applications to real-world problems require a fundamental shift of focus towards improving problem formulations, understanding general theoretic frameworks for problem decompositions, major advances in EA computational efficiency, and most importantly aiding real decision-making in complex, uncertain application contexts.
0
Paper
Citation568
0
Save
0

An explainable machine learning approach to the prediction of pipe failure using minimum night flow

Matthew Hayslep et al.Jun 13, 2024
ABSTRACT Both minimum night flow (MNF) and pipe failures are common ways of understanding leakage within water distribution networks (WDNs). This article takes a data-driven approach and applies linear models, random forests, and neural networks to MNF and pipe failure prediction. First, models are trained to estimate the historic average MNF for over 800 real-world DMAs from the UK. Features for this problem are constructed from pipe records which detail the length, diameter, volume, age, material, and number of customer connections of each pipe. The results show that 65% of the variation in historic average MNF can be explained using these factors alone. Second, a novel method is proposed to deconstruct the models' predictions into a leakage contribution score (LCS), estimating how each individual pipe in a DMA has contributed to the MNF. In order to validate this novel approach, the LCS values are used to classify pipes based on historic pipe failure and are compared against models directly trained for this. The results show that the LCS performs well at this task, achieving an AUC of 0.71. In addition, it is shown that both LCS and directly trained models agree in many cases on an example real-world DMA.