XF
Xuewu Fu
Author with expertise in Toxicology and Environmental Impacts of Mercury Contamination
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
1,280
h-index:
47
/
i10-index:
87
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Human Exposure To Methylmercury through Rice Intake in Mercury Mining Areas, Guizhou Province, China

Xinbin Feng et al.Nov 30, 2007
The toxicity of methylmercury (Me-Hg) has caused widespread public human concern as a result of several widely publicized disasters. Me-Hg is highly toxic, and the nervous system is its principal target tissue for humans. Although the general population is primarily exposed to Me-Hg through contaminated fish and marine mammals, in Hg mining areas a long history of mining activities can produce serious Hg pollution to the local environment. In a study of 98 persons from the Wanshan Hg mining area, hair Me-Hg levels indicated Me-Hg exposure. Rice, the staple food of the local inhabitants also showed high total Hg (T-Hg) and Me-Hg levels. The geometric mean concentration of T-Hg and mean concentration of Me-Hg in rice samples collected from 3 villages in Wanshan Hg mining area were 36.2 (ranging from 4.9 to 214.7), and 8.5 (ranging from 1.9 to 27.6) µg/kg, respectively, which were significantly elevated compared to the rice samples collected from a reference area, where the mean T-Hg and Me-Hg concentrations were 7.0 (3.2–15.1) and 2.5 (0.8–4.3) µg/kg, respectively. Pork meat, vegetable, and drinking water samples collected in Wanshan Hg mining area contained highly elevated T-Hg, but very low levels of Me-Hg. The relationships between the estimated rice Me-Hg intake and hair Me-Hg levels (r = 0.65, p < 0.001) confirmed rice with high Me-Hg levels indeed was the main route of Me-Hg exposure for the local residents in the Wanshan Hg mining area. From our study, we can conclude that the main human exposure to Me-Hg via food consumption is not restricted to fish, but in some cases in mining areas of China to frequent rice meals.
0
Paper
Citation425
0
Save
0

Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow

Xuewu Fu et al.Mar 24, 2010
Using R/V Shiyan 3 as a sampling platform, measurements of gaseous elemental mercury (GEM), surface seawater total mercury (THg), methyl mercury (MeHg), and dissolved gaseous mercury (DGM) were carried out above and in the South China Sea (SCS). Measurements were collected for 2 weeks (10 to 28 August 2007) during an oceanographic expedition, which circumnavigated the northern SCS from Guangzhou (Canton), Hainan Inland, the Philippines, and back to Guangzhou. GEM concentrations over the northern SCS ranged from 1.04 to 6.75 ng m −3 (mean: 2.62 ng m −3 , median: 2.24 ng m −3 ). The spatial distribution of GEM was characterized by elevated concentrations near the coastal sites adjacent to mainland China and lower concentrations at stations in the open sea. Trajectory analysis revealed that high concentrations of GEM were generally related to air masses from south China and the Indochina peninsula, while lower concentrations of GEM were related to air masses from the open sea area, reflecting great Hg emissions from south China and Indochina peninsula. The mean concentrations of THg, MeHg, and DGM in surface seawater were 1.2 ± 0.3 ng L −1 , 0.12 ± 0.05 ng L −1 , and 36.5 ± 14.9 pg L −1 , respectively. In general, THg and MeHg levels in the northern SCS were higher compared to results reported from most other oceans/seas. Elevated THg levels in the study area were likely attributed to significant Hg delivery from surrounding areas of the SCS primarily via atmospheric deposition and riverine input, whereas other sources like in situ production by various biotic and abiotic processes may be important for MeHg. Average sea/air flux of Hg in the study area was estimated using a gas exchange method (4.5 ± 3.4 ng m −2 h −1 ). This value was comparable to those from other coastal areas and generally higher than those from open sea environments, which may be attributed to the reemission of Hg previously transported to this area.
0
Paper
Citation324
0
Save
0

Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition

Maxime Enrico et al.Feb 5, 2016
Gaseous elemental mercury (GEM) is the dominant form of mercury in the atmosphere. Its conversion into oxidized gaseous and particulate forms is thought to drive atmospheric mercury wet deposition to terrestrial and aquatic ecosystems, where it can be subsequently transformed into toxic methylmercury. The contribution of mercury dry deposition is however largely unconstrained. Here we examine mercury mass balance and mercury stable isotope composition in a peat bog ecosystem. We find that isotope signatures of living sphagnum moss (Δ199Hg = −0.11 ± 0.09‰, Δ200Hg = 0.03 ± 0.02‰, 1σ) and recently accumulated peat (Δ199Hg = −0.22 ± 0.06‰, Δ200Hg = 0.00 ± 0.04‰, 1σ) are characteristic of GEM (Δ199Hg = −0.17 ± 0.07‰, Δ200Hg = −0.05 ± 0.02‰, 1σ), and differs from wet deposition (Δ199Hg = 0.73 ± 0.15‰, Δ200Hg = 0.21 ± 0.04‰, 1σ). Sphagnum covered during three years by transparent and opaque surfaces, which eliminate wet deposition, continue to accumulate Hg. Sphagnum Hg isotope signatures indicate accumulation to take place by GEM dry deposition, and indicate little photochemical re-emission. We estimate that atmospheric mercury deposition to the peat bog surface is dominated by GEM dry deposition (79%) rather than wet deposition (21%). Consequently, peat deposits are potential records of past atmospheric GEM concentrations and isotopic composition.
0
Paper
Citation275
0
Save
0

Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

Francesca Sprovieri et al.Sep 23, 2016
Abstract. Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010–2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
0
Paper
Citation255
0
Save
0

Bioprinted, spatially defined breast tumor microenvironment models of intratumoral heterogeneity and drug resistance

Tianying Yuan et al.Aug 1, 2024
Bioprinted breast tumor microenvironment (TME) models with spatial heterogeneity recaptured a well-defined cancer cell-rich stroma structure. Heterogeneity in angiogenesis and extracellular matrix (ECM) stiffness was found in bioprinted TME models. Intercellular crosstalk was identified in bioprinted TME models, which was associated with tumor angiogenesis and ECM remodeling. Bioprinted TME models demonstrated spatially heterogeneous drug resistance in breast cancer. Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand–receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy. Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand–receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy. Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand–receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy. Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand–receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy. Graphical abstract additive manufacturing technology via spatial and temporal deposition of cells, biomaterials, proteins, and other bioactive substances to fabricate customized 3D tissue-like structures in a controlled layer-by-layer stacking. physiological process by which new blood vessels form from pre-existing vessels. This involves several key steps: activation of ECs, sprouting of new vessel branches, formation of the vessel lumen, and the subsequent maturation and stabilization of the new vessels. formulated material used in 3D bioprinting to produce engineered live tissues, comprising a combination of living cells and biocompatible hydrogels. in vitro 3D miniaturized and self-assembled tumor-mimicking structures that originate from patient-derived tumor cells or genetically programmed induced pluripotent stem cells. complex microporous network of biomacromolecules, including proteins, proteoglycans, glycoproteins, and polysaccharides, providing structural support for surrounding cells and engaging in dynamic interactions with cells. 3D network of polymers with highly porous structures, enabling the absorption and preservation of large amounts of water. Most natural hydrogels are biocompatible. in vivo animal models established by transplanting tumor tissues from a patient into immunodeficient mice. variation in cellular and molecular characteristics that occurs in different regions within a single tumor. Spatial heterogeneity encompasses the diverse distribution of cellular composition, genetic and epigenetic variability, biophysical properties, vascularization, and therapeutic response throughout the TME, affecting cancer progression and drug resistance. complex and dynamic ecosystem surrounding a tumor, comprising diverse populations of cancerous and neighboring non-malignant cells, along with noncellular components, such as ECM constitutions and signaling molecules.
0
Citation1
0
Save
0

Using Mercury Stable Isotopes to Quantify Directional Soil–Atmosphere Hg(0) Exchanges in Rice Paddy Ecosystems: Implications for Hg(0) Emissions to the Atmosphere from Land Surfaces

Kun Zhang et al.Jun 13, 2024
Gaseous elemental mercury [Hg(0)] emissions from soils constitute a large fraction of global total Hg(0) emissions. Existing studies do not distinguish biotic- and abiotic-mediated emissions and focus only on photoreduction mediated emissions, resulting in an underestimation of soil Hg(0) emissions into the atmosphere. In this study, directional mercury (Hg) reduction pathways in paddy soils were identified using Hg isotopes. Results showed significantly different isotopic compositions of Hg(0) between those produced from photoreduction (δ202Hg = −0.80 ± 0.67‰, Δ199Hg = −0.38 ± 0.18‰), microbial reduction (δ202Hg = −2.18 ± 0.25‰, Δ199Hg = 0.29 ± 0.38‰), and abiotic dark reduction (δ202Hg = −2.31 ± 0.25‰, Δ199Hg = 0.50 ± 0.22‰). Hg(0) exchange fluxes between the atmosphere and the paddy soils were dominated by emissions, with the average flux ranging from 2.2 ± 5.7 to 16.8 ± 21.7 ng m–2 h–1 during different sampling periods. Using an isotopic signature-based ternary mixing model, we revealed that photoreduction is the most important contributor to Hg(0) emissions from paddy soils. Albeit lower, microbial and abiotic dark reduction contributed up to 36 ± 22 and 25 ± 15%, respectively, to Hg(0) emissions on the 110th day. These novel findings can help improve future estimation of soil Hg(0) emissions from rice paddy ecosystems, which involve complex biotic-, abiotic-, and photoreduction processes.