YX
Yan Xu
Author with expertise in Clustering of Time Series Data and Algorithms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
1,148
h-index:
19
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Towards Pose Invariant Face Recognition in the Wild

Jian Zhao et al.Jun 1, 2018
Pose variation is one key challenge in face recognition. As opposed to current techniques for pose invariant face recognition, which either directly extract pose invariant features for recognition, or first normalize profile face images to frontal pose before feature extraction, we argue that it is more desirable to perform both tasks jointly to allow them to benefit from each other. To this end, we propose a Pose Invariant Model (PIM) for face recognition in the wild, with three distinct novelties. First, PIM is a novel and unified deep architecture, containing a Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN), which are jointly learned from end to end. Second, FFN is a well-designed dual-path Generative Adversarial Network (GAN) which simultaneously perceives global structures and local details, incorporated with an unsupervised cross-domain adversarial training and a "learning to learn" strategy for high-fidelity and identity-preserving frontal view synthesis. Third, DLN is a generic Convolutional Neural Network (CNN) for face recognition with our enforced cross-entropy optimization strategy for learning discriminative yet generalized feature representation. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts.
0

A traffic prediction method for missing data scenarios: graph convolutional recurrent ordinary differential equation network

Ming Jiang et al.Jan 15, 2025
Traffic prediction plays an increasingly important role in intelligent transportation systems and smart cities. Both travelers and urban managers rely on accurate traffic information to make decisions about route selection and traffic management. Due to various factors, both human and natural, traffic data often contains missing values. Addressing the impact of missing data on traffic flow prediction has become a widely discussed topic in the academic community and holds significant practical importance. Existing spatiotemporal graph models typically rely on complete data, and the presence of missing values can significantly degrade prediction performance and disrupt the construction of dynamic graph structures. To address this challenge, this paper proposes a neural network architecture designed specifically for missing data scenarios—graph convolutional recurrent ordinary differential equation network (GCRNODE). GCRNODE combines recurrent networks based on ordinary differential equation (ODE) with spatiotemporal memory graph convolutional networks, enabling accurate traffic prediction and effective modeling of dynamic graph structures even in the presence of missing data. GCRNODE uses ODE to model the evolution of traffic flow and updates the hidden states of the ODE through observed data. Additionally, GCRNODE employs a data-independent spatiotemporal memory graph convolutional network to capture the dynamic spatial dependencies in missing data scenarios. The experimental results on three real-world traffic datasets demonstrate that GCRNODE outperforms baseline models in prediction performance under various missing data rates and scenarios. This indicates that the proposed method has stronger adaptability and robustness in handling missing data and modeling spatiotemporal dependencies.