JG
J.J. Gómez-Cadenas
Author with expertise in Neutrino Flavor Transformation and Detection
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
25,160
h-index:
62
/
i10-index:
262
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

T2K neutrino flux prediction

K. Abe et al.Jan 2, 2013
The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the J-PARC accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector -- Super-Kamiokande (SK) -- located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3 based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is re-weighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA61/SHINE experiment. For the first T2K analyses the uncertainties on the flux prediction are evaluated to be below 15% near the flux peak. The uncertainty on the ratio of the flux predictions at the far and near detectors is less than 2% near the flux peak.
0

Measurement of energy resolution with the NEXT-White silicon photomultipliers

T. Contreras et al.Sep 18, 2024
A bstract The NEXT-White detector, a high-pressure gaseous xenon time projection chamber, demonstrated the excellence of this technology for future neutrinoless double beta decay searches using photomultiplier tubes (PMTs) to measure energy and silicon photomultipliers (SiPMs) to extract topology information. This analysis uses 83 m Kr data from the NEXT-White detector to measure and understand the energy resolution that can be obtained with the SiPMs, rather than with PMTs. The energy resolution obtained of (10.9 ± 0.6)%, full-width half-maximum, is slightly larger than predicted based on the photon statistics resulting from very low light detection coverage of the SiPM plane in the NEXT-White detector. The difference in the predicted and measured resolution is attributed to poor corrections, which are expected to be improved with larger statistics. Furthermore, the noise of the SiPMs is shown to not be a dominant factor in the energy resolution and may be negligible when noise subtraction is applied appropriately, for high-energy events or larger SiPM coverage detectors. These results, which are extrapolated to estimate the response of large coverage SiPM planes, are promising for the development of future, SiPM-only, readout planes that can offer imaging and achieve similar energy resolution to that previously demonstrated with PMTs.
Load More