GM
George Miklos
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
14,480
h-index:
36
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Sequence of the Human Genome

J. Venter et al.Feb 16, 2001
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies—a whole-genome assembly and a regional chromosome assembly—were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional ∼12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
0
0

SEGMENTAL ANEUPLOIDY AND THE GENETIC GROSS STRUCTURE OF THE DROSOPHILA GENOME

Dan Lindsley et al.May 1, 1972
ABSTRACT By combining elements of two Y-autosome translocations with displaced autosomal breakpoints, it is possible to produce zygotes heterozygous for a deficiency for the region between the breakpoints, and also, as a complementary product, zygotes carrying a duplication for precisely the same region. A set of Y-autosome translocations with appropriately positioned breakpoints, therefore, can in principle be used to generate a non-overlapping set of deficiencies and duplications for the entire autosomal complement.—Using this method, we have succeeded in examining segmental aneuploids for 85% of chromosomes 2 and 3 in order to assess the effects of aneuploidy and to determine the number and location of dosage-sensitive loci in the Drosophila genome (Figure 5). Combining our data with previously reported results on the synthesis of Drosophila aneuploids (see Lindsley and Grell 1968), the following generalities emerge.—1. The X chromosome contains no triplo-lethal loci, few or no haplo-lethal loci, at least seven Minute loci, one hyperploid-sensitive locus, and one locus that is both triplo-abnormal and haplo-abnormal. 2. Chromosome 2 contains no triplo-lethal loci, few or no haplo-lethal loci, at least 17 Minute loci, and at least four other haplo-abnormal loci. 3. Chromosome 3 contains one triplo-lethal locus that is also haplo-lethal, few or no other haplo-lethal loci, at least 16 Minute loci, and at least six other haplo-abnormal loci. 4. Chromosome 4 contains no triplo-lethal loci, no haplo-lethal loci, one Minute locus, and no other haplo-abnormal loci.—Thus, the Drosophila genome contains 57 loci, aneuploidy for which leads to a recognizable effect on the organism: one of these is triplo-lethal and haplo-lethal, one is triplo-abnormal and haplo-abnormal, one is hyperploid-sensitive, ten are haplo-abnormal, 41 are Minutes, and three are either haplo-lethals or Minutes. Because of the paucity of aneuploid-lethal loci, it may be concluded that the deleterious effects of aneuploidy are mostly the consequence of the additive effects of genes that are slightly sensitive to abnormal dosage. Moreover, except for the single triplo-lethal locus, the effects of hyperploidy are much less pronounced than those of the corresponding hypoploidy.
0
Citation605
0
Save