JM
J. Mitchell
Author with expertise in Climate Change and Variability Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(25% Open Access)
Cited by:
20,999
h-index:
69
/
i10-index:
112
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research

Gerald Meehl et al.Sep 1, 2007
A coordinated set of global coupled climate model [atmosphere–ocean general circulation model (AOGCM)] experiments for twentieth- and twenty-first-century climate, as well as several climate change commitment and other experiments, was run by 16 modeling groups from 11 countries with 23 models for assessment in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Since the assessment was completed, output from another model has been added to the dataset, so the participation is now 17 groups from 12 countries with 24 models. This effort, as well as the subsequent analysis phase, was organized by the World Climate Research Programme (WCRP) Climate Variability and Predictability (CLIVAR) Working Group on Coupled Models (WGCM) Climate Simulation Panel, and constitutes the third phase of the Coupled Model Intercomparison Project (CMIP3). The dataset is called the WCRP CMIP3 multimodel dataset, and represents the largest and most comprehensive international global coupled climate model experiment and multimodel analysis effort ever attempted. As of March 2007, the Program for Climate Model Diagnostics and Intercomparison (PCMDI) has collected, archived, and served roughly 32 TB of model data. With oversight from the panel, the multimodel data were made openly available from PCMDI for analysis and academic applications. Over 171 TB of data had been downloaded among the more than 1000 registered users to date. Over 200 journal articles, based in part on the dataset, have been published AMERICAN METEOROLOGICAL SOCIETY so far. Though initially aimed at the IPCC AR4, this unique and valuable resource will continue to be maintained for at least the next several years. Never before has such an extensive set of climate model simulations been made available to the international climate science community for study. The ready access to the multimodel dataset opens up these types of model analyses to researchers, including students, who previously could not obtain state-of-the-art climate model output, and thus represents a new era in climate change research. As a direct consequence, these ongoing studies are increasing the body of knowledge regarding our understanding of how the climate system currently works, and how it may change in the future.
0
Paper
Citation2,875
0
Save
0

Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models

R. Cess et al.Sep 20, 1990
The need to understand differences among general circulation model projections of CO 2 ‐induced climatic change has motivated the present study, which provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud‐climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphasized that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback.
0
Paper
Citation873
0
Save
0

The “Greenhouse” effect and climate change

J. MitchellFeb 1, 1989
The presence of radiatively active gases in the Earth's atmosphere (water vapor, carbon dioxide, and ozone) raises its global mean surface temperature by 30 K, making our planet habitable by life as we know it. There has been an increase in carbon dioxide and other trace gases since the Industrial Revolution, largely as a result of man's activities, increasing the radiative heating of the troposphere and surface by about 2 W m −2 . This heating is likely to be enhanced by resulting changes in water vapor, snow and sea ice, and cloud. The associated equilibrium temperature rise is estimated to be between 1 and 2 K, there being uncertainties in the strength of climate feedbacks, particularly those due to cloud. The large thermal inertia of the oceans will slow the rate of warming, so that the expected temperature rise will be smaller than the equilibrium rise. This increases the uncertainty in the expected warming to date, with estimates ranging from less than 0.5 K to over 1 K. The observed increase of 0.5 K since 1900 is consistent with the lower range of these estimates, but the variability in the observed record is such that one cannot necessarily conclude that the observed temperature change is due to increases in trace gases. The prediction of changes in temperature over the next 50 years depends on assumptions concerning future changes in trace gas concentrations, the sensitivity of climate, and the effective thermal inertia of the oceans. On the basis of our current understanding a further warming of at least 1 K seems likely. Numerical models of climate indicate that the changes will not be uniform, nor will they be confined to temperature. The simulated warming is largest in high latitudes in winter and smallest over sea ice in summer, with little seasonal variation in the tropics. Annual mean precipitation and runoff increase in high latitudes, and most simulations indicate a drier land surface in northern mid‐latitudes in summer. The agreement between different models is much better for temperature than for changes in the hydrological cycle. Priorities for future research include developing an improved representation of cloud in numerical models, obtaining a better understanding of vertical mixing in the deep ocean, and determining the inherent variability of the ocean‐atmosphere system. Progress in these areas should enable detection of a man‐made “greenhouse” warming within the next two decades.
0
Paper
Citation617
0
Save
Load More