SJ
Søren Jakobsen
Author with expertise in Chemistry and Applications of Metal-Organic Frameworks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
9,928
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability

J. Hafizovic et al.Sep 26, 2008
Porous crystals are strategic materials with industrial applications within petrochemistry, catalysis, gas storage, and selective separation. Their unique properties are based on the molecular-scale porous character. However, a principal limitation of zeolites and similar oxide-based materials is the relatively small size of the pores, typically in the range of medium-sized molecules, limiting their use in pharmaceutical and fine chemical applications. Metal organic frameworks (MOFs) provided a breakthrough in this respect. New MOFs appear at a high and an increasing pace, but the appearances of new, stable inorganic building bricks are rare. Here we present a new zirconium-based inorganic building brick that allows the synthesis of very high surface area MOFs with unprecedented stability. The high stability is based on the combination of strong Zr−O bonds and the ability of the inner Zr6-cluster to rearrange reversibly upon removal or addition of μ3-OH groups, without any changes in the connecting carboxylates. The weak thermal, chemical, and mechanical stability of most MOFs is probably the most important property that limits their use in large scale industrial applications. The Zr−MOFs presented in this work have the toughness needed for industrial applications; decomposition temperature above 500 °C and resistance to most chemicals, and they remain crystalline even after exposure to 10 tons/cm2 of external pressure.
0

Synthesis and Stability of Tagged UiO-66 Zr-MOFs

M. Kandiah et al.Dec 3, 2010
The development in the field MOF materials is moving from the discovery of new structures toward applications of the most promising materials. In most cases, specialized applications require incorporation of functional chemical groups. This work is a systematic investigation of the effect that simple substituents attached to the aromatic linker have on the stability and property to the parent MOF. A family of isoreticular MOFs, based on the UiO-66 structure was obtained from the three different linker ligands H2N−H2BDC, O2N−H2BDC, and Br−H2BDC. The physicochemical and chemical investigation of these materials demonstrate that this class of MOFs retains high thermal and chemical stabilities, even with functional groups present at the linker units. The results demonstrate the possibility of incorporating active functional groups into the UiO-66 structure almost without losing its exceptionally high thermal and chemical stability. It has been established that the functional groups, at least in the amino functionalized UiO-66 sample, are chemically available as evidenced by the H/D exchange experiment, making the tagged UiO series MOFs very interesting for further studies within the field of catalysis.
0

Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory

Loredana Valenzano et al.Mar 4, 2011
Through a combined use of experimental and theoretical approaches such as XRPD, EXAFS, IR, and UV−vis spectroscopies and ab initio periodic DFT calculations, we report a detailed characterization of structural, vibrational, and electronic properties of UiO-66 (Zr-BDC MOF) in its hydroxylated and dehydroxylated forms. The stability of the materials with respect to the most common solvents, acids, and bases is determined by combining XRPD and TGA/MS techniques. The structures of the two forms of UiO-66 are refined through an interactive XRPD/EXAFS approach and validated by ab initio calculations. Experimental and calculated IR spectra are reported and compared to enlighten the nature of vibrational modes upon dehydroxylation and to show the complete reversibility of the dehydration/hydration phenomenon. Experimental and calculated band gaps are also reported and compared. In this work, we show the necessity to combine, in a synergic way, different experimental techniques and periodic ab initio approaches to disclose and fully understand the nature of complex novel materials such as UiO-66 on structural, vibrational, and electronic grounds. The correct structure refinement could not be possible using one of these three approaches alone, in particular, XRPD data were unable to detect an important distortion of the Zr6O6 units of the dehydrated material that was, however, foreseen in the ab initio calculations and measured in the EXAFS spectra.
0

H2storage in isostructural UiO-67 and UiO-66 MOFs

Sachin Chavan et al.Dec 20, 2011
The recently discovered UiO-66/67/68 class of isostructural metallorganic frameworks (MOFs) [J. H. Cavka et al. J. Am. Chem. Soc., 2008, 130, 13850] has attracted great interest because of its remarkable stability at high temperatures, high pressures and in the presence of different solvents, acids and bases [L. Valenzano et al. Chem. Mater., 2011, 23, 1700]. UiO-66 is obtained by connecting Zr(6)O(4)(OH)(4) inorganic cornerstones with 1,4-benzene-dicarboxylate (BDC) as linker resulting in a cubic MOF, which has already been successfully reproduced in several laboratories. Here we report the first complete structural, vibrational and electronic characterization of the isostructural UiO-67 material, obtained using the longer 4,4'-biphenyl-dicarboxylate (BPDC) linker, by combining laboratory XRPD, Zr K-edge EXAFS, TGA, FTIR, and UV-Vis studies. Comparison between experimental and periodic calculations performed at the B3LYP level of theory allows a full understanding of the structural, vibrational and electronic properties of the material. Both materials have been tested for molecular hydrogen storage at high pressures and at liquid nitrogen temperature. In this regard, the use of a longer ligand has a double benefit: (i) it reduces the density of the material and (ii) it increases the Langmuir surface area from 1281 to 2483 m(2) g(-1) and the micropore volume from 0.43 to 0.85 cm(3) g(-1). As a consequence, the H(2) uptake at 38 bar and 77 K increases from 2.4 mass% for UiO-66 up to 4.6 mass% for the new UiO-67 material. This value is among the highest values reported so far but is lower than those reported for MIL-101, IRMOF-20 and MOF-177 under similar pressure and temperature conditions (6.1, 6.2 and 7.0 mass%, respectively) [A. G. Wong-Foy et al. J. Am. Chem. Soc., 2006, 128, 3494; M. Dinca and J. R. Long. Angew. Chem., Int. Ed., 2008, 47, 6766]. Nevertheless the remarkable chemical and thermal stability of UiO-67 and the absence of Cr in its structure would make this material competitive.
0

Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66

Søren Jakobsen et al.Sep 19, 2012
High-resolution synchrotron radiation x-ray powder diffraction (HR-XRPD) combined with Hf $L$3-edge extended x-ray absorption fine structure allowed us to determine the structure of a Hf-UiO-66 metal-organic framework (MOF) showing that it is isoreticular to Zr-UiO-66 MOF [Cavka et al., J. Am. Chem. Soc. 130, 13850 (2008).]. Thermal gravimetric measurements (coupled with mass spectroscopy) and temperature-dependent synchrotron radiation XRPD proved the high thermal stability of the Hf-UiO-66 MOF. The Langmuir surface area (849 m${}^{2}/$g) combined with the high stability of the UiO-66 framework and with the high neutron absorption cross section of Hf suggest that among all microporous crystalline materials the Hf-UiO-66 MOF possesses the physical and chemical requirements for the interim storage of radioactive waste in a much safer way than is currently available. The first results proving the synthesis of a MOF material with UiO-66 topology realized by a B-containing linker are also reported, allowing a further improvement of the neutron shielding power of this class of materials.