CL
Carlo Lamberti
Author with expertise in Chemistry and Applications of Metal-Organic Frameworks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(52% Open Access)
Cited by:
15,372
h-index:
100
/
i10-index:
365
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability

J. Hafizovic et al.Sep 26, 2008
Porous crystals are strategic materials with industrial applications within petrochemistry, catalysis, gas storage, and selective separation. Their unique properties are based on the molecular-scale porous character. However, a principal limitation of zeolites and similar oxide-based materials is the relatively small size of the pores, typically in the range of medium-sized molecules, limiting their use in pharmaceutical and fine chemical applications. Metal organic frameworks (MOFs) provided a breakthrough in this respect. New MOFs appear at a high and an increasing pace, but the appearances of new, stable inorganic building bricks are rare. Here we present a new zirconium-based inorganic building brick that allows the synthesis of very high surface area MOFs with unprecedented stability. The high stability is based on the combination of strong Zr−O bonds and the ability of the inner Zr6-cluster to rearrange reversibly upon removal or addition of μ3-OH groups, without any changes in the connecting carboxylates. The weak thermal, chemical, and mechanical stability of most MOFs is probably the most important property that limits their use in large scale industrial applications. The Zr−MOFs presented in this work have the toughness needed for industrial applications; decomposition temperature above 500 °C and resistance to most chemicals, and they remain crystalline even after exposure to 10 tons/cm2 of external pressure.
0

Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory

Loredana Valenzano et al.Mar 4, 2011
Through a combined use of experimental and theoretical approaches such as XRPD, EXAFS, IR, and UV−vis spectroscopies and ab initio periodic DFT calculations, we report a detailed characterization of structural, vibrational, and electronic properties of UiO-66 (Zr-BDC MOF) in its hydroxylated and dehydroxylated forms. The stability of the materials with respect to the most common solvents, acids, and bases is determined by combining XRPD and TGA/MS techniques. The structures of the two forms of UiO-66 are refined through an interactive XRPD/EXAFS approach and validated by ab initio calculations. Experimental and calculated IR spectra are reported and compared to enlighten the nature of vibrational modes upon dehydroxylation and to show the complete reversibility of the dehydration/hydration phenomenon. Experimental and calculated band gaps are also reported and compared. In this work, we show the necessity to combine, in a synergic way, different experimental techniques and periodic ab initio approaches to disclose and fully understand the nature of complex novel materials such as UiO-66 on structural, vibrational, and electronic grounds. The correct structure refinement could not be possible using one of these three approaches alone, in particular, XRPD data were unable to detect an important distortion of the Zr6O6 units of the dehydrated material that was, however, foreseen in the ab initio calculations and measured in the EXAFS spectra.
0

Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66

Greig Shearer et al.Jun 16, 2014
ADVERTISEMENT RETURN TO ISSUEPREVCommunicationNEXTTuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66Greig C. Shearer†, Sachin Chavan†, Jayashree Ethiraj‡, Jenny G. Vitillo‡, Stian Svelle†, Unni Olsbye†, Carlo Lamberti‡, Silvia Bordiga†‡, and Karl Petter Lillerud*†View Author Information† inGAP Centre for Research Based Innovation, Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315 Oslo, Norway‡ Department of Chemistry, NIS and INSTM Reference Centre, Via Quarello 15, I-10135 Torino, Italy*E-mail: [email protected]Cite this: Chem. Mater. 2014, 26, 14, 4068–4071Publication Date (Web):June 16, 2014Publication History Received22 May 2014Revised13 June 2014Published online7 July 2014Published inissue 22 July 2014https://pubs.acs.org/doi/10.1021/cm501859phttps://doi.org/10.1021/cm501859prapid-communicationACS PublicationsCopyright © 2014 American Chemical SocietyRequest reuse permissionsArticle Views16635Altmetric-Citations643LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-AlertscloseSupporting Info (1)»Supporting Information Supporting Information SUBJECTS:Anions,Defects,Materials,Thermal stability,Thermogravimetric analysis Get e-Alerts
0
Citation687
0
Save
0

Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates

Carmelo Prestipino et al.Feb 1, 2006
XRD, UV−Vis, EXAFS, XANES, and Raman techniques have been used to study the removal of water molecules coordinated to the Cu(II) framework atoms of the novel HKUST-1 metal-organic framework. The dehydration process preserves the crystalline nature of the material, just causing a reduction of the cell volume due to the shrinking of the [Cu2C4O8] cage. The removal of adsorbed H2O molecule makes the framework Cu(II) sites available for interaction with other probe molecules. In situ IR spectroscopy has evidenced the formation at liquid nitrogen temperature of labile Cu(II)···CO adducts characterized by a ν̃(C−O) = 2178 cm-1 and at 15 K of Cu(II)···H2 adducts characterized by a ν̃(H−H) = 4100 cm-1. To the best of our knowledge, we have observed for the first time a clear signal of Cu(II) carbonyl and dihydrogen complexes formed inside a crystalline microporous hosting matrix. The sinking of the oxygens of the carboxyl units, undergone by the Cu(II) framework ions in the dehydration process, is responsible for the rather low coordinative unsaturation of Cu(II). The important shielding effect of the four oxygen framework atoms is testified by the low polarization factor of the Cu(II) site probed by both CO and H2 molecules.
0

The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities

J. Hafizovic et al.Mar 1, 2007
MOF-5 is the archetype metal−organic framework and has been subjected to numerous studies the past few years. The focal point of this report is the pitfalls related to the MOF-5 phase identification based on powder XRD data. A broad set of conditions and procedures have been reported for MOF-5 synthesis. These variations have led to materials with substantially different adsorption properties (specific surface areas in the range 700 to 3400 m2/g). The relatively low weight loss observed for some as synthesized samples upon solvent removal is also indicative of a low pore volume. Regrettably, these materials have all been described as MOF-5 without any further comments. Furthermore, the reported powder XRD patterns hint at structural differences: The variations in surface area are accompanied by peak splitting phenomena and rather pronounced changes in the relative peak intensities in the powder XRD patterns. In this work, we use single-crystal XRD to investigate structural differences between low and high surface area MOF-5. The low surface area MOF-5 sample had two different classes of crystals. For the dominant phase, Zn(OH)2 species partly occupied the cavities. The presence of Zn species makes the hosting cavity and possibly also adjacent cavities inaccessible and thus efficiently reduces the pore volume of the material. Furthermore, the minor phase consisted of doubly interpenetrated MOF-5 networks, which lowers the adsorption capacity. The presence of Zn species and lattice interpenetration changes the symmetry from cubic to trigonal and explains the peak splitting observed in the powder XRD patterns. Pore-filling effects from the Zn species (and partly the solvent molecules) are also responsible for the pronounced variations in powder XRD peak intensities. This latter conclusion is particularly useful for predicting the adsorption properties of a MOF-5-type material from powder XRD.
0

H2storage in isostructural UiO-67 and UiO-66 MOFs

Sachin Chavan et al.Dec 20, 2011
The recently discovered UiO-66/67/68 class of isostructural metallorganic frameworks (MOFs) [J. H. Cavka et al. J. Am. Chem. Soc., 2008, 130, 13850] has attracted great interest because of its remarkable stability at high temperatures, high pressures and in the presence of different solvents, acids and bases [L. Valenzano et al. Chem. Mater., 2011, 23, 1700]. UiO-66 is obtained by connecting Zr(6)O(4)(OH)(4) inorganic cornerstones with 1,4-benzene-dicarboxylate (BDC) as linker resulting in a cubic MOF, which has already been successfully reproduced in several laboratories. Here we report the first complete structural, vibrational and electronic characterization of the isostructural UiO-67 material, obtained using the longer 4,4'-biphenyl-dicarboxylate (BPDC) linker, by combining laboratory XRPD, Zr K-edge EXAFS, TGA, FTIR, and UV-Vis studies. Comparison between experimental and periodic calculations performed at the B3LYP level of theory allows a full understanding of the structural, vibrational and electronic properties of the material. Both materials have been tested for molecular hydrogen storage at high pressures and at liquid nitrogen temperature. In this regard, the use of a longer ligand has a double benefit: (i) it reduces the density of the material and (ii) it increases the Langmuir surface area from 1281 to 2483 m(2) g(-1) and the micropore volume from 0.43 to 0.85 cm(3) g(-1). As a consequence, the H(2) uptake at 38 bar and 77 K increases from 2.4 mass% for UiO-66 up to 4.6 mass% for the new UiO-67 material. This value is among the highest values reported so far but is lower than those reported for MIL-101, IRMOF-20 and MOF-177 under similar pressure and temperature conditions (6.1, 6.2 and 7.0 mass%, respectively) [A. G. Wong-Foy et al. J. Am. Chem. Soc., 2006, 128, 3494; M. Dinca and J. R. Long. Angew. Chem., Int. Ed., 2008, 47, 6766]. Nevertheless the remarkable chemical and thermal stability of UiO-67 and the absence of Cr in its structure would make this material competitive.
0

A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia

Ton Janssens et al.Mar 19, 2015
For the first time, the standard and fast selective catalytic reduction (SCR) of NO by NH3 are described in a complete catalytic cycle that is able to produce the correct stoichiometry while allowing adsorption and desorption of stable molecules only. The standard SCR reaction is a coupling of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided into an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore, both NO and NH3 are required in the reduction, and finally, oxidation by NO + O2 or NO2 leads to the same state of the catalyst. These points are shown experimentally for a Cu-CHA catalyst by combining in situ X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and Fourier transform infrared spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The activation energy calculated by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate-determining for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible influence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR while being a poor catalyst for NO oxidation to NO2.
0

Vibrational Structure of Titanium Silicate Catalysts. A Spectroscopic and Theoretical Study

Gabriele Ricchiardi et al.Oct 30, 2001
A thorough analysis of the vibrational features of the titanium silicalite-1 (TS-1) catalyst is presented, based on quantitative IR measurements, Raman and resonant Raman experiments, quantitative XANES, and quantum chemical calculations on cluster and periodic models. The linear correlation of the intensity of the IR and Raman bands located at 960 and 1125 cm(-1) and the XANES peak at 4967 eV with the amount of tetrahedral Ti are quantitatively demonstrated. Raman and resonant Raman spectra of silicalite and TS-1 with variable Ti content are presented, showing main features at 960 and 1125 cm(-1) associated with titanium insertion into the zeolite framework. The enhancement of the intensity of the 1125 cm(-1) feature and the invariance of the 960 cm(-1) feature in UV-Raman experiments, are discussed in terms of resonant Raman selection rules. Quantum chemical calculations on cluster models Si[OSi(OH)(3)](4) and Ti[OSi(OH)(3)](4) at the B3LYP/6-31G(d) level of theory provide the basis for the assignment of the main vibrational contributions and for the understanding of Raman enhancement. The resonance-enhanced 1125 cm(-1) mode is unambiguously associated with a totally symmetric vibration of the TiO(4) tetrahedron, achieved through in-phase antisymmetric stretching of the four connected Ti-O-Si bridges. This vibration can also be described as a totally symmetric stretching of the four Si-O bonds pointing toward Ti. The resonance enhancement of this feature is explained in terms of the electronic structure of the Ti-containing moiety. Asymmetric stretching modes of TO(4) units show distinct behavior when (i) T is occupied by Si as in perfect silicalite, (ii) T is occupied by Ti as in TS-1, or (iii) the oxygen atom belongs to an OH group, such as in terminal tetrahedra of cluster models and in real defective zeolites. Asymmetric SiO(4) and TiO(4) stretching modes appear above and below 1000 cm(-1), respectively, when they are achieved through antisymmetric stretching of the T-O-Si bridges, and around 800 cm(-1) (in both SiO(4) and TiO(4)) when they involve symmetric stretching of the T-O-Si units. In purely siliceous models, the transparency gap between the main peaks at 800 and 1100 cm(-1) contains only vibrational features associated with terminal Si-OH groups, while in Ti-containing models it contains also the above-mentioned asymmetric TiO(4) modes, which in turn are strongly coupled with Si-OH stretching modes. Calculations on periodic models of silicalite and TS-1 free of OH groups using the QMPOT embedding method correctly reproduce the transparency gap of silicalite and the appearance of asymmetric TiO(4) vibrations at 960 cm(-1) in TS-1. Finally, we demonstrate, for the first time, that the distortion of the tetrahedral symmetry around Ti caused by water adsorption quenches the UV-Raman enhancement of the 1125 cm(-1) band.
Load More