KS
Kankana Saikia
Author with expertise in Technical Aspects of Biodiesel Production
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Spherical Superhydrophobic Activated Carbon Catalyst for Biodiesel Production ‐Exploring Process Efficiency, Kinetics, Thermodynamics and Life Cycle Cost Analysis

Arpita Das et al.Jun 16, 2024
Abstract Engineering the wettability of functional materials holds significant interest, focusing on the need for superhydrophobic catalysts, crucial for their ability to prevent the poisoning of active sites by water, produced in situ or as a by‐product. Herein, for the first time, a superhydrophobic spherical activated carbon (SSAC@PhSO 3 H) is engineered as a catalyst via a novel synthetic approach and tailored in Jatropha curcas oil (JCO) biodiesel synthesis. With a large surface area (1461 m 2 g −1 ), high acid density (6.26 mmol g −1 ), and water contact angle (163.4°), the catalyst demonstrates superior performance and remarkable water repellency, firmly establishing its superhydrophobic characteristics. Response Surface Methodology based on the Central Composite Design (RSM‐CCD) approach predicted a maximal biodiesel yield of 98.8% (80 °C, 5 wt%, 15:1 methanol to oil molar ratio (MOMR), and 40 min). Life cycle cost analysis (LCCA) estimates biodiesel production cost of 0.37 USD ($) per kg emphasizing high commercial viability. Compared with H 2 SO 4 ‐sulfonated biochar, SSAC@PhSO 3 H retains its inherent activity (86.8 ± 0.4% yield in 10 th run) and spherical morphology even after nine successive reaction cycles indicating high stability. Nevertheless, JCO biodiesel's fuel properties met European Norm, EN 14 212 and American Society for Testing and Materials, ASTM D6757 standards, highlighting its potential for industrial biodiesel production.
0

Response surface optimization, kinetics, thermodynamics, and life cycle cost analysis of biodiesel production from Jatropha curcas oil using biomass-based functional activated carbon catalyst

Kankana Saikia et al.Jun 3, 2024
A highly efficient activated porous catalyst, BPAC-500-S, derived from waste banana peels through a novel synthesis involving pyrolysis; and functionalization with 4-benzene diazonium sulphonate, has been developed. For comparison of catalytic activity, the material was also functionalized with sulphuric acid (BPAC-500-SX). The (BPAC-500-S) catalyst underwent impregnation and activation with ZnCl2, and its properties were extensively characterized using BET, SEM, XPS, XRD, FT-IR, and TGA techniques. Comparative analysis of catalysts obtained at different pyrolysis temperatures (400, 500, and 600 ºC) revealed that BPAC-500-S pyrolyzed at 500 ºC, exhibited maximum surface area (840.83 m2g-1) and sulphur density (4.7 %). Utilizing BPAC-500-S as a catalyst, an efficient process for biodiesel synthesis from Jatropha curcas oil (JCO) was developed, achieving a remarkable 98.91 % conversion, as confirmed by 1H-NMR spectroscopy. Notably, life cycle cost analysis demonstrated a low biodiesel production cost of $ 0.70/L. The BPAC-500-S catalyst exhibited exceptional reusability maintaining more than 80 % biodiesel yield over seven reaction cycles. This study presents a sustainable and cost-effective approach to biodiesel production, emphasizing the potential of waste-derived catalysts in green and economically viable processes.