XL
Xiaowei Li
Author with expertise in Gas Sensing Technology and Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
26
(12% Open Access)
Cited by:
4,888
h-index:
61
/
i10-index:
196
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO32–-Doped Bi2O2CO3

Hongwei Huang et al.Jun 3, 2015
We herein demonstrate self-doping of the CO32– anionic group into a wide bandgap semiconductor Bi2O2CO3 realized by a one-pot hydrothermal technique. The photoresponsive range of the self-doped Bi2O2CO3 can be extended from UV to visible light and the band gap can be continuously tuned. Density functional theory (DFT) calculation results demonstrate that the foreign CO32– ions are doped in the caves constructed by the four adjacent CO32– ions and the CO32– self-doping can effectively narrow the band gap of Bi2O2CO3 by lowering the conduction band position and meanwhile generating impurity level. The photocatalytic performance is evaluated by monitoring NO removal from the gas phase, photodegradation of a colorless contaminant (bisphenol A, BPA) in an aqueous solution, and photocurrent generation. In comparison with the pristine Bi2O2CO3 which is not sensitive to visible light, the self-doped Bi2O2CO3 exhibits drastically enhanced visible-light photoreactivity, which is also superior to that of many other well-known photocatalysts such as P25, C3N4, and BiOBr. The highly enhanced photocatalytic performance is attributed to combination of both efficient visible light absorption and separation of photogenerated electron–hole pairs. The self-doped Bi2O2CO3 also shows decent photochemical stability, which is of especial importance for its practical applications. This work demonstrates that self-doping with an anionic group enables the band gap engineering and the design of high-performance photocatalysts sensitive to visible light.
0

Precursor-reforming protocol to 3D mesoporous g-C 3 N 4 established by ultrathin self-doped nanosheets for superior hydrogen evolution

Na Tian et al.May 29, 2017
Graphitic carbon nitride (g-C3N4) has attracted enormous research attention as a promising low cost, visible-light driven semiconductor photocatalyst. However, low photoabsorption efficiencies and unsatisfactory charge separation limit the potential of g-C3N4 in many applications, motivating attempts to manipulate the structure and electronic properties of g-C3N4 to achieve improved performance. Here we describe a novel precursor-reforming strategy that ultimately affords 3D mesoporous ultrathin g-C3N4 with superior photocatalytic performance compared to conventional calcination-derived g-C3N4. We demonstrate that during hydrothermal treatment of melamine and urea, melamine undergoes an irreversible monoclinic to orthorhombic phase transformation, and the additive urea (excess typically 3-fold) serves as an additional N source and porogen. Calcination of the orthorhombic melamine yields mesoporous g-C3N4 with enhanced photoabsorption properties and an outstanding photoactivity. A 23-fold increased hydrogen evolution rate of 3579 μmol h−1 g−1 (λ > 420 nm) was achieved with an apparent quantum efficiency (AQE) of 27.8% at 420 ± 15 nm, a level of performance far beyond any AQE previously reported for ultrathin/porous/doped g-C3N4 photocatalyst. Our work conclusively demonstrates a new synthetic strategy towards high performance g-C3N4-based photocatalytic materials for energy applications.
0

A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties

Jingfa Li et al.Jan 1, 2013
A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co. Subsequently, the growth of multiporous MnCo2O4 and CoMn2O4 quasi-hollow microspheres by topotactic chemical transformation from the corresponding precursors are realized through a non-equilibrium heat treatment process. Topotactic conversion further demonstrated that the much larger CoMn2O4 pores than those of MnCo2O4 are possibly due to the longer transfer distance of ions. When evaluated as anode materials for LIBs (lithium ion batteries), after 25 cycles at a current density of 200 mA g−1, the resultant MnCo2O4 and CoMn2O4 quasi-hollow microspheres possessed reversible capacities of 755 and 706 mA h g−1, respectively. In particular, the MnCo2O4 samples could deliver a reversible capacity as high as 610 mA h g−1 even at a higher current density of 400 mA g−1 with excellent electrochemical stability after 100 cycles of testing, indicating its potential application in LIBs. We believe that such good performance results from the appropriate pore size and quasi-hollow nature of MnCo2O4 microspheres, which can effectively buffer the large volume variation of anodes based on the conversion reaction during Li+ insertion/extraction. The present strategy is simple but very effective, and due to its versatility, it can be extended to other binary, even ternary complex metal oxides with high-performance in LIBs.
0

ZIF‐8/ZIF‐67‐Derived Co‐Nx‐Embedded 1D Porous Carbon Nanofibers with Graphitic Carbon‐Encased Co Nanoparticles as an Efficient Bifunctional Electrocatalyst

Wenming Zhang et al.May 9, 2018
Herein, an approach is reported for fabrication of Co-Nx -embedded 1D porous carbon nanofibers (CNFs) with graphitic carbon-encased Co nanoparticles originated from metal-organic frameworks (MOFs), which is further explored as a bifunctional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Electrochemical results reveal that the electrocatalyst prepared by pyrolysis at 1000 °C (CoNC-CNF-1000) exhibits excellent catalytic activity toward ORR that favors the four-electron ORR process and outstanding long-term stability with 86% current retention after 40 000 s. Meanwhile, it also shows superior electrocatalytic activity toward OER, reaching a lower potential of 1.68 V at 10 mA cm-2 and a potential gap of 0.88 V between the OER potential (at 10 mA cm-2 ) and the ORR half-wave potential. The ORR and OER performance of CoNC-CNF-1000 have outperformed commercial Pt/C and most nonprecious-metal catalysts reported to date. The remarkable ORR and OER catalytic performance can be mainly attributable to the unique 1D structure, such as higher graphitization degree beneficial for electronic mobility, hierarchical porosity facilitating the mass transport, and highly dispersed CoNx C active sites functionalized carbon framework. This strategy will shed light on the development of other MOF-based carbon nanofibers for energy storage and electrochemical devices.
0

Nitrogen-Doped Carbon Quantum Dots/BiOBr Ultrathin Nanosheets: In Situ Strong Coupling and Improved Molecular Oxygen Activation Ability under Visible Light Irradiation

Jun Di et al.Nov 23, 2015
Novel nitrogen-doped carbon quantum dots (N-CQDs)/BiOBr ultrathin nanosheets photocatalysts have been prepared via reactable ionic liquid assisted solvothermal process. The one-step formation mechanism of the N-CQDs/BiOBr ultrathin nanosheets was based on the initial formation of strong coupling between the ionic liquid and N-CQDs as well as subsequently result in tight junctions between N-CQDs and BiOBr with homodisperse of N-CQDs. The photocatalytic activity of the as-prepared photocatalysts was evaluated by the degradation of different pollutants under visible light irradiation such as ciprofloxacin (CIP), rhodamine B (RhB), tetracycline hydrochloride (TC), and bisphenol A (BPA). The improved photocatalytic performance of N-CQDs/BiOBr materials was ascribed to the crucial role of N-CQDs, which worked as photocenter for light harvesting, charge separation center for separating the charge carriers, and active center for degrading the pollutants. After the modification of N-CQDs, the molecular oxygen activation ability of N-CQDs/BiOBr materials was greatly enhanced. A possible photocatalytic mechanism based on experimental results was proposed.
Load More