IH
Irene Himmelbauer
Author with expertise in Arctic Permafrost Dynamics and Climate Change
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
243
h-index:
2
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The International Soil Moisture Network: serving Earth system science for over a decade

Wouter Dorigo et al.Nov 9, 2021
Abstract. In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011b, a). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonises them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth/en/, last access: 28 October 2021). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of July 2021, the ISMN now contains the data of 71 networks and 2842 stations located all over the globe, with a time period spanning from 1952 to the present. The number of networks and stations covered by the ISMN is still growing, and approximately 70 % of the data sets contained in the database continue to be updated on a regular or irregular basis. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade, including a description of network and data set updates and quality control procedures. A comprehensive review of the existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage and to shape priorities for the next decade of operations of this unique community-based data repository.
0
Citation249
0
Save
0

Estimating the uncertainties of satellite derived soil moisture at global scale

François Gibon et al.Dec 1, 2024
This study attempts to derive the uncertainty of the soil moisture estimation from passive microwave satellite mission at global scale. To do so, the approach is based on the sensitivity of the Soil Moisture and Ocean Salinity (SMOS) soil moisture retrieval quality to the land surface characteristics within its footprint (presence of forest, topography, open water bodies, sand, clay, bulk density and soil organic carbon content). First, we performed a global assessment of SMOS using in situ measurements from the International Soil Moisture Network (ISMN) as reference, with more than 1900 ISMN stations and 10 years of SMOS data. This assessment shows that the ubRMSD scores vary greatly between locations (with a mean of 0.074 m3m−3 and an interquartile range of 0.030 m3m−3). Second, the scores are analyzed for different surface conditions within the satellite footprint. The best agreement between the ground measurement and SMOS time series are obtained for low forest cover, low topographic complexity, and marginal presence of open water bodies within the SMOS footprint. Soil parameters also have an impact, with better scores for sandier soils with a high bulk-density and low soil organic carbon content. Finally, we propose to extrapolate the obtained relationships, using a multiple linear regression, in order to derive a global map of SMOS uncertainties based on surface conditions. This map of predicted uncertainties show a diverse range of ubRMSD values across the globe (with a mean of 0.076 m3m−3 and an interquartile range of 0.031 m3m−3) depending on the surface characteristics. At the ISMN site location, the predicted ubRMSD shows similar results than the comparison between SMOS and the in situ measurements. The map of predicted SMOS ubRMSD represents an upper bound estimate of the SMOS uncertainty, as it includes the uncertainties of the in situ sensor measurements and the scale mismatch. Further investigations will focus on the different components of this uncertainty budget to obtain a better assessment of the absolute uncertainties of SMOS soil moisture retrievals across the globe.