MP
Minal Patel
Author with expertise in Acute Myeloid Leukemia
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(38% Open Access)
Cited by:
2,272
h-index:
24
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells

Ly Vu et al.Sep 18, 2017
+17
Y
B
L
The N6-methyladenosine (m6A) modification in mRNAs, generated by the enzyme METTL3, controls normal human hematopoietic stem/progenitor cell differentiation and maintains the undifferentiated leukemic phenotype of human acute myeloid leukemia cells. N6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA that is required for the differentiation of mouse embryonic stem cells. However, it remains unknown whether the m6A modification controls the differentiation of normal and/or malignant myeloid hematopoietic cells. Here we show that shRNA-mediated depletion of the m6A-forming enzyme METTL3 in human hematopoietic stem/progenitor cells (HSPCs) promotes cell differentiation, coupled with reduced cell proliferation. Conversely, overexpression of wild-type METTL3, but not of a catalytically inactive form of METTL3, inhibits cell differentiation and increases cell growth. METTL3 mRNA and protein are expressed more abundantly in acute myeloid leukemia (AML) cells than in healthy HSPCs or other types of tumor cells. Furthermore, METTL3 depletion in human myeloid leukemia cell lines induces cell differentiation and apoptosis and delays leukemia progression in recipient mice in vivo. Single-nucleotide-resolution mapping of m6A coupled with ribosome profiling reveals that m6A promotes the translation of c-MYC, BCL2 and PTEN mRNAs in the human acute myeloid leukemia MOLM-13 cell line. Moreover, loss of METTL3 leads to increased levels of phosphorylated AKT, which contributes to the differentiation-promoting effects of METTL3 depletion. Overall, these results provide a rationale for the therapeutic targeting of METTL3 in myeloid leukemia.
0

Cancer therapy shapes the fitness landscape of clonal hematopoiesis

Kelly Bolton et al.Oct 26, 2020
+62
M
N
K
Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies. Environmental exposures shape patterns of selection for mutations in clonal hematopoiesis. Cancer therapies promote the growth of clones with mutations that are strongly enriched in treatment-related myeloid neoplasms.
0
Citation473
0
Save
1

Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes

Elsa Bernard et al.Aug 3, 2020
+78
R
Y
E
Tumor protein p53 (TP53) is the most frequently mutated gene in cancer1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease3,4, rapid transformation to acute myeloid leukemia (AML)5, resistance to conventional therapies6–8 and dismal outcomes9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R)11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response. Clinical sequencing across a large prospective cohort of patients with myelodysplasic syndrome uncovers distinct associations between the mono- and biallelic states of TP53 and clinical presentation
1
Citation444
0
Save
0

Single-cell mutation analysis of clonal evolution in myeloid malignancies

Linde Miles et al.Oct 28, 2020
+21
M
R
L
Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1–3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression. The evolution of myeloid malignancies is investigated using combined single-cell sequencing and immunophenotypic analysis.
0
Citation366
0
Save
0

AML-743 Germline Homologous Recombination Deficiency (HRD) Influences the Fitness Impact of Oncologic Therapy on DNA Damage Response Gene Clonal Hematopoiesis (CH)

Jeremy Baeten et al.Sep 1, 2024
+16
L
I
J
0

Implications of TP53 Allelic State for Genome Stability, Clinical Presentation and Outcomes in Myelodysplastic Syndromes

Elsa Bernard et al.Dec 19, 2019
+81
T
J
E
TP53 mutations are associated with poor clinical outcomes and treatment resistance in myelodysplastic syndromes. However, the biological and clinical relevance of the underlying mono- or bi-allelic state of the mutations is unclear. We analyzed 3,324 MDS patients for TP53 mutations and allelic imbalances of the TP53 locus and found that 1 in 3 TP53 -mutated patients had mono-allelic targeting of the gene whereas 2 in 3 had multiple hits consistent with bi-allelic targeting. The established associations for TP53 with complex karyotype, high-risk presentation, poor survival and rapid leukemic transformation were specific to patients with multi-hit state only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System, while mono-allelic patients did not differ from TP53 wild-type patients. The separation by allelic state was retained in therapy-related MDS. Findings were validated in a cohort of 1,120 patients. Ascertainment of TP53 allelic state is critical for diagnosis, risk estimation and prognostication precision in MDS, and future correlative studies of treatment response should consider TP53 allelic state.
0

Single cell mutational profiling delineates clonal trajectories in myeloid malignancies

Linde Miles et al.Feb 9, 2020
+19
T
R
L
Myeloid malignancies, including acute myeloid leukemia (AML), arise from the proliferation and expansion of hematopoietic stem and progenitor cells which acquire somatic mutations. Bulk molecular profiling studies on patient samples have suggested that somatic mutations are obtained in a step-wise fashion, where mutant genes with high variant allele frequencies (VAFs) are proposed to occur early in disease development and mutations with lower VAFs are thought to be acquired later in disease progression 1-3. Although bulk sequencing informs leukemia biology and prognostication, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity and clone size, or offer definitive evidence of mutational order. To elucidate the clonal framework of myeloid malignancies, we performed single cell mutational profiling on 146 samples from 123 patients. We found AML is most commonly comprised of a small number of dominant clones, which in many cases harbor co-occurring mutations in epigenetic regulators. Conversely, mutations in signaling genes often occur more than once in distinct subclones consistent with increasing clonal diversity. We also used these data to map the clonal trajectory of each patient and found that specific mutation combinations (FLT3-ITD + NPM1c) synergize to promote clonal expansion and dominance. We combined cell surface protein expression with single cell mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our studies of clonal architecture at a single cell level provide novel insights into the pathogenesis of myeloid transformation and how clonal complexity contributes to disease progression.
0

Accelerated single cell seeding in relapsed multiple myeloma

Heather Landau et al.Feb 26, 2020
+41
Y
M
H
The malignant progression of multiple myeloma is characterized by the seeding of cancer cells in different anatomic sites followed by their clonal expansion. It has been demonstrated that this spatial evolution at varying anatomic sites is characterized by genomic heterogeneity. However, it is unclear whether each anatomic site at relapse reflects the expansion of pre-existing but previously undetected disease or secondary seeding from other sites. Furthermore, genomic evolution over time at spatially distinct sites of disease has not been investigated in a systematic manner. To address this, we interrogated 25 samples, by whole genome sequencing, collected at autopsy from 4 patients with relapsed multiple myeloma and demonstrated that each site had a unique evolutionary trajectory characterized by distinct single and complex structural variants and copy number changes. By analyzing the landscape of mutational signatures at these sites and for an additional set of 125 published whole exomes collected from 51 patients, we demonstrate the profound mutagenic effect of melphalan and platinum in relapsed multiple myeloma. Chemotherapy-related mutagenic processes are known to introduce hundreds of unique mutations in each surviving cancer cell. These mutations can be detectable by bulk sequencing only in cases of clonal expansion of a single cancer cell bearing the mutational signature linked to chemotherapy exposure thus representing a unique single-cell genomic barcode linked to a discrete time window in each patient life. We leveraged this concept to show that multiple myeloma systemic seeding is accelerated at clinical relapse and appears to be driven by the survival and subsequent expansion of a single myeloma cell following treatment with high dose melphalan therapy and autologous stem cell transplant.
1

Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1 mutated acute myeloid leukemia

Wenbin Xiao et al.May 13, 2020
+23
Y
M
W
Abstract Plasmacytoid dendritic cells (pDC) are the principal natural type I interferon producing dendritic cells. Neoplastic expansion of pDCs and pDC precursors leads to blastic plasmacytoid dendritic cell neoplasm (BPDCN) and clonal expansion of mature pDCs has been described in chronic myelomonocytic leukemia (CMML). The role of pDC expansion in acute myeloid leukemia (AML) is poorly studied. Here we characterize AML patients with pDC expansion (pDC-AML), which we observe in approximately 5% of AML. pDC-AML often possess crosslineage antigen expression and have adverse risk stratification with poor outcome. RUNX1 mutations are the most common somatic alterations in pDC-AML (>70%) and are much more common than in AML without PDC expansion. We demonstrate that pDCs are clonally related to, and originate from, leukemic blasts in pDC-AML. We further demonstrate that leukemic blasts from RUNX1 -mutated AML upregulate a pDC transcriptional program, poising the cells towards pDC differentiation and expansion. Finally, tagraxofusp, a targeted therapy directed to CD123, reduces leukemic burden and eliminates pDCs in a patient-derived xenograft model. In conclusion, pDC-AML is characterized by a high frequency of RUNX1 mutations and increased expression of a pDC transcriptional program. CD123 targeting represents a potential treatment approach for pDC-AML.
0

Oncologic Therapy Shapes the Fitness Landscape of Clonal Hematopoiesis

Kelly Bolton et al.Nov 20, 2019
+64
T
R
K
Clonal hematopoiesis (CH) is frequent in cancer patients and associated with increased risk of therapy related myeloid neoplasms (tMN). To define the relationship between CH, oncologic therapy, and tMN progression, we studied 24,439 cancer patients. We show that previously treated patients have increased rates of CH, with enrichment of mutations in DNA Damage Response (DDR) genes (TP53, PPM1D, CHEK2). Exposure to radiation, platinum and topoisomerase II inhibitors have the strongest association with CH with evidence of dose dependence and gene treatment interactions. We validate these associations in serial sampling from 525 patients and show that exposure to cytotoxic and radiation therapy imparts a selective advantage specifically in hematopoietic cells with DDR mutations. In patients who progressed to tMN, the clone at CH demarcated the dominant clone at tMN diagnosis. CH mutational features predict risk of therapy related myeloid neoplasm in solid tumor patients with clinical implications for early detection and treatment decisions.
Load More