JG
Junjie Ge
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(16% Open Access)
Cited by:
5,525
h-index:
48
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering

Meiling Xiao et al.Oct 11, 2019
Great enthusiasm in single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) has been aroused by the discovery of M-NX as a promising ORR catalysis center. However, the performance of SACs lags far behind that of state-of-the-art Pt due to the unsatisfactory adsorption-desorption behaviors of the reported catalytic centers. To address this issue, rational manipulation of the active site configuration toward a well-managed energy level and geometric structure is urgently desired, yet still remains a challenge. Herein, we report a novel strategy to accomplish this task through the construction of an Fe-Co dual-atom centered site. A spontaneously absorbed electron-withdrawing OH ligand was proposed to act proactively as an energy level modifier to empower easy intermediate desorption, while the triangular Fe-Co-OH coordination facilitates O-O bond scission. Benefiting from these attributes, the as-constructed FeCoN5-OH site enables an ORR onset potential and half-wave potential of up to 1.02 and 0.86 V (vs RHE), respectively, with an intrinsic activity over 20 times higher than the single-atom FeN4 site. Our finding not only opens up a novel strategy to tailor the electronic structure of an atomic site toward boosted activity but also provides new insights into the fundamental understanding of diatomic sites for ORR electrocatalysis.
0

Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N4 Active Site Identification Revealed by X-ray Absorption Spectroscopy

Meiling Xiao et al.Feb 21, 2018
Developing highly efficient, low-cost oxygen reduction catalysts, especially in acidic medium, is of significance toward fuel cell commercialization. Although pyrolyzed Fe-N-C catalysts have been regarded as alternatives to platinum-based catalytic materials, further improvement requires precise control of the Fe-Nx structure at the molecular level and a comprehensive understanding of catalytic site structure and the ORR mechanism on these materials. In this report, we present a microporous metal–organic-framework-confined strategy toward the preferable formation of single-atom dispersed catalysts. The onset potential for Fe-N-C is 0.92 V, comparable to that of Pt/C and outperforming most noble-metal-free catalysts ever reported. A high-spin Fe3+-N4 configuration is revealed by the 57Fe Mössbauer spectrum and X-ray absorption spectroscopy for Fe L-edge, which will convert to Fe2+-N4 at low potential. The in situ reduced Fe2+-N4 moiety from high-spin Ox-Fe3+-N4 contributes to most of the ORR activity due to its high turnover frequency (TOF) of ca. 1.71 e s–1 sites–1.
0

Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site

Meiling Xiao et al.Feb 14, 2018
Herein, a novel binuclear active site structure, Co2NxCy, is intentionally designed and successfully fabricated to efficiently catalyze the oxygen reduction reaction (ORR), which is achieved by precisely controlling the atomic scale structure of bimetal-organic frameworks before pyrolysis. Through discovering a two-atom site with Co-Co distance at 2.1–2.2 Å from aberration-corrected scanning transmission electron microscopy (STEM), as well as a novel shortened Co-Co path (2.12 Å) from the X-ray absorption spectroscopy, we for the first time identified the binuclear Co2NX site in the pyrolyzed catalyst. Combined with density functional theory (DFT) calculation, the structure is further confirmed as Co2N5. Excitingly, the Co2N5 site performs approximately 12 times higher activity than the conventional CoN4 site and the corresponding catalyst shows unprecedented catalytic activity in acidic electrolyte with half-wave potential of 0.79 V, approaching the commercial Pt/C catalyst and presenting the best one among the Co-N-C catalysts. Theoretical density functional theory calculations reveal that the novel binuclear site exhibits considerably reduced thermodynamic barrier towards ORR, thus contributing to the much higher intrinsic activity. Our finding opens up a new path to design efficient M-Nx/C catalysts, thus pushing the fuel cell industry field one step ahead.
0

Engineering Energy Level of Metal Center: Ru Single-Atom Site for Efficient and Durable Oxygen Reduction Catalysis

Meiling Xiao et al.Nov 25, 2019
Emerging as a new frontier in heterogeneous catalysis, single-atom site catalysts (SSCs) have sparked enormous attention and bring about new opportunities to oxygen reduction electrocatalysis. Despite considerable progress achieved recently, most of the reported SSCs suffer from either insufficient activity or unsatisfactory stability, which severely retards their practical application. Here, we demonstrate a novel Ru-SSC with appropriate adsorption free energy of OH* (ΔGOH*) to confer excellent activity and low Fenton reactivity to maintain long-term stability. The as-developed Ru-SSC exhibits encouraging oxygen reduction reaction turnover frequency of 4.99 e– s–1 sites–1, far exceeding the state-of-the-art Fe-SSC counterpart (0.816 e– s–1 sites–1), as a result of Ru energy level regulation via spontaneous OH binding. Furthermore, Ru-SSC exhibits greatly suppressed Fenton reactivity, with restrained generation of reactive oxygen species directly observed, thus endowing the Ru-SSC with much more superior stability (only 17 mV negative shift after 20 000 cycles) than the Fe-SSC counterpart (31 mV). The practical application of Ru-SSC is further validated by its excellent activity and stability in a real fuel cell device.
0

Preferentially Engineering FeN4 Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn–Air Batteries

Meiling Xiao et al.Nov 4, 2020
Abstract Single‐atom FeN 4 sites at the edges of carbon substrates are considered more active for oxygen electrocatalysis than those in plane; however, the conventional high‐temperature pyrolysis process does not allow for precisely engineering the location of the active site down to atomic level. Enlightened by theoretical prediction, herein, a self‐sacrificed templating approach is developed to obtain edge‐enriched FeN 4 sites integrated in the highly graphitic nanosheet architecture. The in situ formed Fe clusters are intentionally introduced to catalyze the growth of graphitic carbon, induce porous structure formation, and most importantly, facilitate the preferential anchoring of FeN 4 to its close approximation. Due to these attributes, the as‐resulted catalyst (denoted as Fe/N‐G‐SAC) demonstrates unprecedented catalytic activity and stability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) by showing an impressive half‐wave potential of 0.89 V for the ORR and a small overpotential of 370 mV at 10 mA cm −2 for the OER. Moreover, the Fe/N‐G‐SAC cathode displays encouraging performance in a rechargeable Zn–air battery prototype with a low charge–discharge voltage gap of 0.78 V and long‐term cyclability for over 240 cycles, outperforming the noble metal benchmarks.
Load More