To investigate the mechanism by which Peitu Yifei Granules inhibit idiopathic pulmonary fibrosis(IPF) in rats, fifty specific-pathogen-free(SPF) grade male Wistar rats were randomly divided into blank group and modeling group. IPF was induced in the modeling group rats by tracheal infusion of 5 mg·kg~(-1) bleomycin(BLM) and then randomly divided into model group, pirfenidone group, and high-dose, medium-dose, and low-dose groups treated with Peitu Yifei Granules. After 24 hours of modeling, the treatment groups received intragastric administration of either Peitu Yifei Granules or pirfenidone as a positive control drug; meanwhile, the model group received an equal volume of normal saline. After 21 days of treatment administration, lung tissue samples were collected for analysis. Pathological changes in lung tissues were assessed using hematoxylin-eosin(HE) staining and Masson's trichrome staining. The expression levels of protein kinase B(Akt), mammalian target of rapamycin(mTOR), their phosphorylated forms, and sequestosome 1(p62) were determined through Western blot(WB). Fluorescent quantitative real-time polymerase chain reaction(RT-qPCR) was used to measure messenger ribonucleic acid(mRNA) expression levels of Beclin-1, microtubule-associated proteins 1A/1B light chain 3B(LC3B), and p62. Immunohistochemistry was performed to assess protein expression levels of Beclin-1 and LC3B in lung tissue samples. RESULTS:: demonstrated that lung tissue structure appeared normal without significant collagen deposition in the blank group rats. In contrast, rats from the model group exhibited thickened alveolar septa along with evident inflammatory changes and collagen deposition. Compared to the model group rats, those treated with Peitu Yifei Granules or pirfenidone showed significantly improved lung tissue structure with reduced inflammation and collagen deposition observed histologically. Furthermore, compared with those of the blank group, the expressions of p62 and its mRNA, p-Akt and p-mTOR protein in lung tissues of the model group were significantly increased, while Beclin-1, LC3B and their mRNA levels were significantly decreased. Compared with those of the model group, the expressions of p62 and its mRNA, p-Akt and p-mTOR in lung tissues of the pirfenidone group and Peitu Yifei Granules high-dose and medium-dose groups were significantly decreased, while Beclin-1, LC3B and their mRNA expressions were significantly increased. The above results indicate that Peitu Yifei Granules can improve autophagy levels in lung tissues by inhibiting the phosphoinositide 3-kinase(PI3K)/Akt/mTOR signaling pathway and delay the development of IPF disease.