JC
Jia Chew
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(9% Open Access)
Cited by:
2,641
h-index:
59
/
i10-index:
258
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam

Hou Wang et al.Jul 17, 2018
Water and energy are key sustainability issues that need to be addressed. Photocatalysis represents an attractive means to not only remediate polluted waters, but also harness solar energy. Unfortunately, the employment of photocatalysts remains a practical challenge in terms of high cost, low efficiency, secondary pollution and unexploited water matrices influence. This study investigated the feasibility of photocatalysis to both treat water and produce hydrogen with practical water systems. Polymeric carbon nitride foam (CNF) with large surface area and mesoporous structure was successfully prepared via the bubble-template effect of ammonium chloride decomposition during thermal condensation. The reaction kinetics, mechanisms, and effect of natural water matrices and wastewater on CNF-based photocatalytic removal of tetracycline hydrochloride (TC-HCl) were systematically investigated. Furthermore, the efficiency of clean hydrogen energy from natural water matrices and wastewater was also evaluated. It was found that the photocatalytic performance of CNF for TC-HCl removal was principally affected by calcination temperature in the presence of NH4Cl. The degradation rates of CNF-4 (calcined at 550 °C) were approximately 1.84, 2.49 and 7.47 times than that of the CNF-2 (calcined at 600 °C), CNF-1 (calcined at 500 °C) and GCN (without NH4Cl), respectively. Results indicate that the improved photocatalytic performance was predominantly ascribed to the large specific surface area, increased availability of exposed active sites, and enhanced transport and separation efficiency of the photogenerated carrier. Based on electron spin resonance, chemical trapping experiment and density functional theory calculation, photoinduced oxidizing species (·O2− and holes) initially attacked the C-N-C fragment of TC molecules, which were finally mineralized to CO2, water and inorganic matters. Under the synergistic influence of water constituents (including acidity and alkalinity, ion species and dissolved organic substances), various water matrices greatly affected the degradation rate of TC-HCl, with the highest removal efficiency of 78.9% in natural seawater, followed by reservoir water (75.0%), tap water (62.3%), deionized water (49.8%), reverse osmosis concentrate (32.7%) and pharmaceutical wastewater (18.9%). Interestingly, low amounts of the emerging microplastics slightly improved TC-HCl removal, whereas high amounts (1.428 × 107 P/cm3) restricted removal due to light absorption and the intrinsic adsorption interaction. Moreover, the photocatalysts were able over repeated usage. Notably, the hydrogen yields rates of polymeric carbon nitride foam were 352.2, 299.8, 184.9 and 94.3 μmol/g/h in natural seawater, pharmaceutical wastewater, water from reservoir and tap water, respectively. This study proves the potential of novel nonmetal porous photocatalyst to simultaneously treat wastewater while converting solar energy into clean hydrogen energy.
0

Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance

Hou Wang et al.Apr 9, 2018
Semiconductor-based heterojunctions, widely applied in photocatalytic solar-to-chemical energy conversion, are advantageous for synergistically expediting photocatalytic reaction beyond individual the constituent components. Here we showed new quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids consisting of well-designed type-II heterojunction and non-noble metal-based Schottky junction with favorable charge transfer channels for efficient photocatalysis application. The mesoporous hybrids owned pleasurable visible-light absorption property and excellent capability in photogenerated exciton separation and carrier transport. Specifically, the hybridized photocatalyst with the additive Ti3C2Tx content of 16 mg (InTi-16) had excellent visible-light photocatalytic performance towards pollutant removal in water with a degradation rate of 0.04977 min−1, which was 3.2 and 6.2 folds higher than that of pure In2S3 and pure Ti3C2Tx, respectively. What’s more, the photocatalytic degradation ability of InTi-16 had surpassed that of many other types of In2S3-based photocatalyst including In2S3/carbon nanotube (CNT), In2S3/reduced graphene oxide (rGO), In2S3/MoS2, and In2S3/TiO2 hybrids. The promising photocatalytic performance was strongly depended on the separation and diffusion of photogenerated exciton and carrier via a multitude of charge transfer channels due to the formation of double heterostructure (type-II heterojunction and Schottky junction). It had originated from the synergistic effects among the visible-light absorption of In2S3, the upward band bending of TiO2 and the favorable electrical conductivity of Ti3C2Tx. Prolonger electron lifetime favored for the generation of more strongly oxidizing radical (e.g. ·O2-) at the in-plane of Ti3C2Tx, and thus enhanced photocatalytic degradation ability. This work demonstrates that the TiO2/Ti3C2Tx can be a potentially novel platform for constructing efficient photocatalysts both for wide-ranging applications and unraveling the transfer behavior of photo-excited electrons based on charge transfer channels.
0

Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect

Yan Wu et al.Jan 11, 2018
Materials of perovskite-type structure have attracted considerable attention for their applications in photocatalysis. In this study, a novel composite of p-type LaFeO3 microsphere coated with n-type nanosized graphitic carbon nitride nanosheets was constructed by the quasi-polymeric calcination method with the aid of electrostatic self-assembly interaction. Results indicate that the LaFeO3/g-C3N4p-n heterostructured photocatalyst obtained, in contrast to the pure constituents, enabled improved visible-light absorption, and more efficient separation and migration of charge carriers via solid p-n heterojunction interfacial effect. Correspondingly, the LaFeO3/g-C3N4 composite allowed for higher visible-light-responsive photocatalytic activity for the degradation of Brilliant Blue, which was 16.9 and 7.8 times that of pristine g-C3N4 and LaFeO3, respectively. The photocatalytic degradation of Brilliant Blue was ascribed to the combined contributions of the photogenerated holes (h+), superoxide radicals (O2-) and hydroxyl radicals (OH). Based on solid p-n heterojunction interfacial interaction, a Z-scheme charge carrier transfer pathway integrated with the dye-sensitization effect is proposed as the underlying mechanism of the photocatalytic reaction process. Therefore, we believe that the perovskite-type LaFeO3/g-C3N4 Z-scheme photcatalyst promotes the development of photocatalysis and holds much promise for environmental remediation.
0

Modeling of Frictional Inter-Bristle Contact in Brush Seals With Shaft Radial Movements

H. Phan et al.Nov 28, 2024
Abstract Brush seals are utilized in turbines to minimize leakage flows and enhance thermal efficiency. Their widespread use faces challenges like pressure-stiffening and hysteresis, leading to unpredictable performance. This work introduces an advanced numerical model to simulate inter-bristle frictional contact, shaft and backing ring interaction, and three-dimensional bristle bending. The model is adopted to investigate multi-bristle brush seal's behavior under shaft radial movements and pressure loading. Backing ring friction emerges as a vital factor in hysteresis modeling, lessening the impact of shaft friction. When the shaft retracts, modeling the bristle tip clearance becomes important. The clearance greatly increases leakage flow rate and changes bristles' aerodynamic loading distribution. With clearance, the normal force on upstream bristles rises markedly, opposing bristle hang-up, while the axial force decreases in downstream bristles, alleviating the bristle pack compression. Considering these factors, an improved model for pressurized seals in the shaft retraction phase is developed and compared to experimental data in the literature. Frictional inter-bristle contact significantly modifies the distribution of local tip force through the pack. These effects would influence localized wear and heat generation across the brush seal pack, shedding light on the uneven wear patterns often observed in experiments. The present high-fidelity model can capture these complex interactions, offering a means to deepen our understanding of the physical mechanisms underpinning novel brush seal designs.
Load More