GD
Graciela Delgado
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
856
h-index:
27
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The trans-ancestral genomic architecture of glycemic traits

Jihua Chen et al.May 31, 2021
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.
1
Citation460
0
Save
0

A saturated map of common genetic variants associated with human height

Loïc Yengo et al.Oct 12, 2022
Abstract Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes 1 . Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel 2 ) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
0
Citation370
0
Save
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 10, 2022
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
3
Citation16
0
Save
0

Genome-wide association study provides new insights into the genetic architecture and pathogenesis of heart failure

Sonia Shah et al.Jul 10, 2019
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report the largest GWAS meta-analysis of HF to-date, comprising 47,309 cases and 930,014 controls. We identify 12 independent associations with HF at 11 genomic loci, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function suggesting shared genetic aetiology. Expression quantitative trait analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homeostasis (BAG3), and cellular senescence (CDKN1A). Using Mendelian randomisation analysis we provide new evidence supporting previously equivocal causal roles for several HF risk factors identified in observational studies, and demonstrate CAD-independent effects for atrial fibrillation, body mass index, hypertension and triglycerides. These findings extend our knowledge of the genes and pathways underlying HF and may inform the development of new therapeutic approaches.
0

Associations between serum mineral concentrations and mortality by renal function in the Ludwigshafen Risk and Cardiovascular Health Study

Angela Moissl et al.Nov 19, 2024
Abstract The association of serum concentrations of minerals and phosphate with overall and cardiovascular mortality based on renal function is poorly understood. 3307 patients (average age 62.7 ± 10.6 years) in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study were grouped by estimated glomerular filtration rate (eGFR) into three categories: < 60, 60–89, and ≥ 90 mL/min per 1.73 m 2 , per KDIGO 2022 guidelines and were analysed using Cox regression. Low serum sodium and iron concentrations were associated with poor renal function and increased overall mortality risk, whereas higher serum zinc concentrations were associated with reduced overall and cardiovascular mortality risk. Elevated serum copper concentrations were associated with increased mortality risk across all eGFR categories. Comparing low and normal eGFR, we observed a fourfold increase in all-cause mortality risk for eGFR < 60 mL/min per 1.73 m 2 and a twofold increase for eGFR 60–89 mL/min per 1.73 m 2 , accompanied by changes in serum mineral concentrations. The optimal range of mineral and phosphate concentrations in serum was strongly related to renal function. To reduce mortality risk, it’s important to regularly monitor serum mineral and phosphate concentrations as well as renal function, especially in cardiovascular patients with compromised renal function.