EQ
Elisa Quintana
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(91% Open Access)
Cited by:
13,838
h-index:
62
/
i10-index:
134
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BYKEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA

Thomas Barclay et al.Jun 29, 2011
On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (Rp < 1.25 R⊕), 288 super-Earth-size (1.25 R⊕ ⩽ Rp < 2 R⊕), 662 Neptune-size (2 R⊕ ⩽ Rp < 6 R⊕), 165 Jupiter-size (6 R⊕ ⩽ Rp < 15 R⊕), and 19 up to twice the size of Jupiter (15 R⊕ ⩽ Rp < 22 R⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.
0

ARCHITECTURE AND DYNAMICS OF KEPLER 'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS

Jack Lissauer et al.Oct 13, 2011
About one-third of the ∼1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass–radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.
0
Citation671
0
Save
0

A closely packed system of low-mass, low-density planets transiting Kepler-11

Jack Lissauer et al.Feb 1, 2011
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation. NASA's Kepler mission, a space observatory designed to detect and study extrasolar planets that transit across the disk of their host star, has hit the jackpot with the discovery of a six-planet system orbiting a Sun-like star now named Kepler-11. Five of the planets have orbital periods of between 10 and 47 days, and these are among the smallest for which size and mass have both been measured. The sixth and outermost transiting planet has been less well characterized thus far. Only one other star has more than one confirmed transiting planet (Kepler-9, which has three). This newly discovered system resembles our own Solar System in being close to coplanar, but Kepler-11's planets orbit much closer to their star. Kepler is due to continue to return data on Kepler-11 and its planets for some time yet, and it should provide many valuable constraints on models of the formation and evolution of solar systems in general. When an extrasolar planet passes in front of its star (transits), its radius can be measured from the decrease in starlight and its orbital period from the time between transits. This study reports Kepler spacecraft observations of a single Sun-like star that reveal six transiting planets, five with orbital periods between 10 and 47 days plus a sixth one with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases.
0
Paper
Citation591
0
Save
0

OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE

Jon Jenkins et al.Mar 30, 2010
The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.
0

PLANETARY CANDIDATES OBSERVED BY KEPLER . III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA

Natalie Batalha et al.Feb 5, 2013
New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft.Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300.Improved vetting metrics are employed, contributing to higher catalog reliability.Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries.Twenty-two months of photometry are used for the purpose of characterizing each of the candidates.Ephemerides (transit epoch, T 0 , and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R P /R ), reduced semimajor axis (d/R ), and impact parameter (b).The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R ⊕ compared to 53% for candidates larger than 2 R ⊕ ) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits).The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete.Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness.The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident.The progression
0

VALIDATION OFKEPLER'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS

Jason Rowe et al.Mar 4, 2014
The Kepler mission has discovered more than 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of those in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false positives indicates that the multiplanet systems contain very few false positive signals due to other systems not gravitationally bound to the target star. False positives in the multi-planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ∼two unidentified false positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves, ground-based spectroscopy, and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. Nonetheless, our result nearly doubles the number verified exoplanets.
0

MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS

Geoffrey Marcy et al.Jan 13, 2014
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm−3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ∼2 R⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).
Load More