YW
Yinmin Wang
Author with expertise in Additive Manufacturing of Metallic Components
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(61% Open Access)
Cited by:
13,612
h-index:
49
/
i10-index:
92
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Additively manufactured hierarchical stainless steels with high strength and ductility

Yinmin Wang et al.Oct 30, 2017
Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications. 3D-printed steels with hierarchically heterogeneous microstructures demonstrate high strength and ductility.
0

Ductile crystalline–amorphous nanolaminates

Yinmin Wang et al.Jun 26, 2007
It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper–zirconium glass nanolaminates. These nanocrystalline–amorphous nanolaminates exhibit a high flow stress of 1.09 ± 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 ± 1.7%, which is six to eight times higher than that typically observed in conventional crystalline–crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous–crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility.
0

Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution

Yuanyue Liu et al.Jul 31, 2017
Hydrogen is a promising energy carrier and key agent for many industrial chemical processes1. One method for generating hydrogen sustainably is via the hydrogen evolution reaction (HER), in which electrochemical reduction of protons is mediated by an appropriate catalyst-traditionally, an expensive platinum-group metal. Scalable production requires catalyst alternatives that can lower materials or processing costs while retaining the highest possible activity. Strategies have included dilute alloying of Pt2 or employing less expensive transition metal alloys, compounds or heterostructures (e.g., NiMo, metal phosphides, pyrite sulfides, encapsulated metal nanoparticles)3-5. Recently, low-cost, layered transition-metal dichalcogenides (MX2)6 based on molybdenum and tungsten have attracted substantial interest as alternative HER catalysts7-11. These materials have high intrinsic per-site HER activity; however, a significant challenge is the limited density of active sites, which are concentrated at the layer edges.8,10,11. Here we use theory to unravel electronic factors underlying catalytic activity on MX2 surfaces, and leverage the understanding to report group-5 MX2 (H-TaS2 and H-NbS2) electrocatalysts whose performance instead derives from highly active basal-plane sites. Beyond excellent catalytic activity, they are found to exhibit an unusual ability to optimize their morphology for enhanced charge transfer and accessibility of active sites as the HER proceeds. This leads to long cycle life and practical advantages for scalable processing. The resulting performance is comparable to Pt and exceeds all reported MX2 candidates.
Load More