SM
Sasa Mutic
Author with expertise in Radiotherapy Physics and Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(46% Open Access)
Cited by:
8,045
h-index:
58
/
i10-index:
175
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A technique for the quantitative evaluation of dose distributions

Daniel Low et al.May 1, 1998
The commissioning of a three-dimensional treatment planning system requires comparisons of measured and calculated dose distributions. Techniques have been developed to facilitate quantitative comparisons, including superimposed isodoses, dose-difference, and distance-to-agreement (DTA) distributions. The criterion for acceptable calculation performance is generally defined as a tolerance of the dose and DTA in regions of low and high dose gradients, respectively. The dose difference and DTA distributions complement each other in their useful regions. A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria. Although the composite distribution identifies locations where the calculation fails the preselected criteria, no numerical quality measure is provided for display or analysis. A technique is developed to unify dose distribution comparisons using the acceptance criteria. The measure of acceptability is the multidimensional distance between the measurement and calculation points in both the dose and the physical distance, scaled as a fraction of the acceptance criteria. In a space composed of dose and spatial coordinates, the acceptance criteria form an ellipsoid surface, the major axis scales of which are determined by individual acceptance criteria and the center of which is located at the measurement point in question. When the calculated dose distribution surface passes through the ellipsoid, the calculation passes the acceptance test for the measurement point. The minimum radial distance between the measurement point and the calculation points (expressed as a surface in the dose–distance space) is termed the γ index. Regions where correspond to locations where the calculation does not meet the acceptance criteria. The determination of γ throughout the measured dose distribution provides a presentation that quantitatively indicates the calculation accuracy. Examples of a 6 MV beam penumbra are used to illustrate the γ index.
0

Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132

Kristy Brock et al.Apr 5, 2017
Image registration and fusion algorithms exist in almost every software system that creates or uses images in radiotherapy. Most treatment planning systems support some form of image registration and fusion to allow the use of multimodality and time-series image data and even anatomical atlases to assist in target volume and normal tissue delineation. Treatment delivery systems perform registration and fusion between the planning images and the in-room images acquired during the treatment to assist patient positioning. Advanced applications are beginning to support daily dose assessment and enable adaptive radiotherapy using image registration and fusion to propagate contours and accumulate dose between image data taken over the course of therapy to provide up-to-date estimates of anatomical changes and delivered dose. This information aids in the detection of anatomical and functional changes that might elicit changes in the treatment plan or prescription. As the output of the image registration process is always used as the input of another process for planning or delivery, it is important to understand and communicate the uncertainty associated with the software in general and the result of a specific registration. Unfortunately, there is no standard mathematical formalism to perform this for real-world situations where noise, distortion, and complex anatomical variations can occur. Validation of the software systems performance is also complicated by the lack of documentation available from commercial systems leading to use of these systems in undesirable 'black-box' fashion. In view of this situation and the central role that image registration and fusion play in treatment planning and delivery, the Therapy Physics Committee of the American Association of Physicists in Medicine commissioned Task Group 132 to review current approaches and solutions for image registration (both rigid and deformable) in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes.
0

Impact of FDG-PET on radiation therapy volume delineation in non–small-cell lung cancer

Jeffrey Bradley et al.Apr 18, 2004
Purpose Locoregional failure remains a significant problem for patients receiving definitive radiation therapy alone or combined with chemotherapy for non–small-cell lung cancer (NSCLC). Positron emission tomography (PET) with [18F]fluoro-2-deoxy-d-glucose (FDG) has proven to be a valuable diagnostic and staging tool for NSCLC. This prospective study was performed to determine the impact of treatment simulation with FDG-PET and CT on radiation therapy target volume definition and toxicity profiles by comparison to simulation with computed tomography (CT) scanning alone. Methods Twenty-six patients with Stages I–III NSCLC were studied. Each patient underwent sequential CT and FDG-PET simulation on the same day. Immobilization devices used for both simulations included an alpha cradle, a flat tabletop, 6 external fiducial markers, and a laser positioning system. A radiation therapist participated in both simulations to reproduce the treatment setup. Both the CT and fused PET/CT image data sets were transferred to the radiation treatment planning workstation for contouring. Each FDG-PET study was reviewed with the interpreting nuclear radiologist before tumor volumes were contoured. The fused PET/CT images were used to develop the three-dimensional conformal radiation therapy (3DCRT) plan. A second physician, blinded to the results of PET, contoured the gross tumor volumes (GTV) and planning target volumes (PTV) from the CT data sets, and these volumes were used to generate mock 3DCRT plans. The PTV was defined by a 10-mm margin around the GTV. The two 3DCRT plans for each patient were compared with respect to the GTV, PTV, mean lung dose, volume of normal lung receiving ≥20 Gy (V20), and mean esophageal dose. Results The FDG-PET findings altered the AJCC TNM stage in 8 of 26 (31%) patients; 2 patients were diagnosed with metastatic disease based on FDG-PET and received palliative radiation therapy. Of the 24 patients who were planned with 3DCRT, PET clearly altered the radiation therapy volume in 14 (58%), as follows. PET helped to distinguish tumor from atelectasis in all 3 patients with atelectasis. Unsuspected nodal disease was detected by PET in 10 patients, and 1 patient had a separate tumor focus detected within the same lobe of the lung. Increases in the target volumes led to increases in the mean lung dose, V20, and mean esophageal dose. Decreases in the target volumes in the patients with atelectasis led to decreases in these normal-tissue toxicity parameters. Conclusions Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in over 50% of patients by comparison with CT targeting. The increasing availability of integrated PET/CT units will facilitate the use of this technology for radiation treatment planning. A confirmatory multicenter, cooperative group trial is planned within the Radiation Therapy Oncology Group.
0
Citation556
0
Save
0

Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia

Phillip Cuculich et al.Dec 13, 2017
Recent advances have enabled noninvasive mapping of cardiac arrhythmias with electrocardiographic imaging and noninvasive delivery of precise ablative radiation with stereotactic body radiation therapy (SBRT). We combined these techniques to perform catheter-free, electrophysiology-guided, noninvasive cardiac radioablation for ventricular tachycardia.We targeted arrhythmogenic scar regions by combining anatomical imaging with noninvasive electrocardiographic imaging during ventricular tachycardia that was induced by means of an implantable cardioverter-defibrillator (ICD). SBRT simulation, planning, and treatments were performed with the use of standard techniques. Patients were treated with a single fraction of 25 Gy while awake. Efficacy was assessed by counting episodes of ventricular tachycardia, as recorded by ICDs. Safety was assessed by means of serial cardiac and thoracic imaging.From April through November 2015, five patients with high-risk, refractory ventricular tachycardia underwent treatment. The mean noninvasive ablation time was 14 minutes (range, 11 to 18). During the 3 months before treatment, the patients had a combined history of 6577 episodes of ventricular tachycardia. During a 6-week postablation "blanking period" (when arrhythmias may occur owing to postablation inflammation), there were 680 episodes of ventricular tachycardia. After the 6-week blanking period, there were 4 episodes of ventricular tachycardia over the next 46 patient-months, for a reduction from baseline of 99.9%. A reduction in episodes of ventricular tachycardia occurred in all five patients. The mean left ventricular ejection fraction did not decrease with treatment. At 3 months, adjacent lung showed opacities consistent with mild inflammatory changes, which had resolved by 1 year.In five patients with refractory ventricular tachycardia, noninvasive treatment with electrophysiology-guided cardiac radioablation markedly reduced the burden of ventricular tachycardia. (Funded by Barnes-Jewish Hospital Foundation and others.).
0

A method for the reconstruction of four‐dimensional synchronized CT scans acquired during free breathing

Daniel Low et al.May 30, 2003
Breathing motion is a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Accounting for breathing motion has a profound effect on the size of conformal radiation portals employed in these sites. Breathing motion also causes artifacts and distortions in treatment planning computed tomography (CT) scans acquired during free breathing and also causes a breakdown of the assumption of the superposition of radiation portals in intensity‐modulated radiation therapy, possibly leading to significant dose delivery errors. Proposed voluntary and involuntary breath‐hold techniques have the potential for reducing or eliminating the effects of breathing motion, however, they are limited in practice, by the fact that many lung cancer patients cannot tolerate holding their breath. We present an alternative solution to accounting for breathing motion in radiotherapy treatment planning, where multislice CT scans are collected simultaneously with digital spirometry over many free breathing cycles to create a four‐dimensional (4‐D) image set, where tidal lung volume is the additional dimension. An analysis of this 4‐D data leads to methods for digital‐spirometry, based elimination or accounting of breathing motion artifacts in radiotherapy treatment planning for free breathing patients. The 4‐D image set is generated by sorting free‐breathing multislice CT scans according to user‐defined tidal‐volume bins. A multislice CT scanner is operated in the ciné mode, acquiring 15 scans per couch position, while the patient undergoes simultaneous digital‐spirometry measurements. The spirometry is used to retrospectively sort the CT scans by their correlated tidal lung volume within the patient's normal breathing cycle. This method has been prototyped using data from three lung cancer patients. The actual tidal lung volumes agreed with the specified bin volumes within standard deviations ranging between 22 and 33 An analysis of sagittal and coronal images demonstrated relatively small (<1 cm) motion artifacts along the diaphragm, even for tidal volumes where the rate of breathing motion is greatest. While still under development, this technology has the potential for revolutionizing the radiotherapy treatment planning for the thorax and upper abdomen.
0
Citation465
0
Save
0

A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy

K. Chao et al.Mar 1, 2001
Purpose: Locoregional tumor control for locally advanced cancers with radiation therapy has been unsatisfactory. This is in part associated with the phenomenon of tumor hypoxia. Assessing hypoxia in human tumors has been difficult due to the lack of clinically noninvasive and reproducible methods. A recently developed positron emission tomography (PET) imaging-based hypoxia measurement technique which employs a Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) tracer is of great interest. Oxygen electrode measurements in animal experiments have demonstrated a strong correlation between low tumor pO2 and excess 60Cu-ATSM accumulation. Intensity-modulated radiation therapy (IMRT) allows selective targeting of tumor and sparing of normal tissues. In this study, we examined the feasibility of combining these novel technologies to develop hypoxia imaging (Cu-ATSM)-guided IMRT, which may potentially deliver higher dose of radiation to the hypoxic tumor subvolume to overcome inherent hypoxia-induced radioresistance without compromising normal tissue sparing. Methods and Materials: A custom-designed anthropomorphic head phantom containing computed tomography (CT) and positron emitting tomography (PET) visible targets consisting of plastic balls and rods distributed throughout the "cranium" was fabricated to assess the spatial accuracy of target volume mapping after multimodality image coregistration. For head-and-neck cancer patients, a CT and PET imaging fiducial marker coregistration system was integrated into the thermoplastic immobilization head mask with four CT and PET compatible markers to assist image fusion on a Voxel-Q treatment-planning computer. This system was implemented on head-and-neck cancer patients, and the gross tumor volume (GTV) was delineated based on physical and radiologic findings. Within GTV, regions with a 60Cu-ATSM uptake twice that of contralateral normal neck muscle were operationally designated as ATSM-avid or hypoxic tumor volume (hGTV) for this feasibility study. These target volumes along with other normal organs contours were defined and transferred to an inverse planning computer (Corvus, NOMOS) to create a hypoxia imaging-guided IMRT treatment plan. Results: A study of the accuracy of target volume mapping showed that the spatial fidelity and imaging distortion after CT and PET image coregistration and fusion were within 2 mm in phantom study. Using fiducial markers to assist CT/PET imaging fusion in patients with carcinoma of the head-and-neck area, a heterogeneous distribution of 60Cu-ATSM within the GTV illustrated the success of 60Cu-ATSM PET to select an ATSM-avid or hypoxic tumor subvolume (hGTV). We further demonstrated the feasibility of Cu-ATSM-guided IMRT by showing an example in which radiation dose to the hGTV could be escalated without compromising normal tissue (parotid glands and spinal cord) sparing. The plan delivers 80 Gy in 35 fractions to the ATSM-avid tumor subvolume and the GTV simultaneously receives 70 Gy in 35 fractions while more than one-half of the parotid glands are spared to less than 30 Gy. Conclusion: We demonstrated the feasibility of a novel Cu-ATSM-guided IMRT approach through coregistering hypoxia 60Cu-ATSM PET to the corresponding CT images for IMRT planning. Future investigation is needed to establish a clinical-pathologic correlation between 60Cu-ATSM retention and radiation curability, to understand tumor re-oxygenation kinetics, and tumor target uncertainty during a course of radiation therapy before implementing this therapeutic approach to patients with locally advanced tumor.
0

The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management

M. Huq et al.Jun 15, 2016
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for "intensity modulated radiation therapy (IMRT)" as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient.
0
Citation412
0
Save
0

Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen

Lauren Henke et al.Dec 23, 2017
Purpose/objectivesSBRT is used to treat oligometastatic or unresectable primary abdominal malignancies, although ablative dose delivery is limited by proximity of organs-at-risk (OAR). Stereotactic, magnetic resonance (MR)-guided online-adaptive radiotherapy (SMART) may improve SBRT’s therapeutic ratio. This prospective Phase I trial assessed feasibility and potential advantages of SMART to treat abdominal malignancies.Materials/methodsTwenty patients with oligometastatic or unresectable primary liver (n = 10) and non-liver (n = 10) abdominal malignancies underwent SMART. Initial plans prescribed 50 Gy/5 fractions (BED 100 Gy) with goal 95% PTV coverage by 95% of prescription, subject to hard OAR constraints. Daily real-time online-adaptive plans were created as needed, based on daily setup MR-image-set tumor/OAR “anatomy-of-the-day” to preserve hard OAR constraints, escalate PTV dose, or both. Treatment times, patient outcomes, and dosimetric comparisons between initial and adaptive plans were prospectively recorded.ResultsOnline adaptive plans were created at time of treatment for 81/97 fractions, due to initial plan violation of OAR constraints (61/97) or observed opportunity for PTV dose escalation (20/97). Plan adaptation increased PTV coverage in 64/97 fractions. Zero Grade ≥ 3 acute (<6 months) treatment-related toxicities were observed.DiscussionSMART is clinically deliverable and safe, allowing PTV dose escalation and/or simultaneous OAR sparing compared to non-adaptive abdominal SBRT.
0
Citation353
0
Save
0

Predicting dose‐volume histograms for organs‐at‐risk in IMRT planning

L. Appenzoller et al.Nov 27, 2012
Purpose: The objective of this work was to develop a quality control (QC) tool to reduce intensity modulated radiotherapy (IMRT) planning variability and improve treatment plan quality using mathematical models that predict achievable organ‐at‐risk (OAR) dose‐volume histograms (DVHs) based on individual patient anatomy. Methods: A mathematical framework to predict achievable OAR DVHs was derived based on the correlation of expected dose to the minimum distance from a voxel to the PTV surface. OAR voxels sharing a range of minimum distances were computed as subvolumes. A three‐parameter, skew‐normal probability distribution was used to fit subvolume dose distributions, and DVH prediction models were developed by fitting the evolution of the skew‐normal parameters as a function of distance with polynomials. Cohorts of 20 prostate and 24 head‐and‐neck IMRT plans with identical clinical objectives were used to train organ‐specific average models for rectum, bladder, and parotids. A sum of residuals analysis quantifying the integrated difference between the clinically approved DVH and predicted DVH evaluated similarity between DVHs. The ability of the average models to prospectively predict DVHs was evaluated on an independent validation cohort of 20 prostate plans. Statistical comparison of the sums of residuals between training and validation cohorts quantified the accuracy of the average model. Restricted sums of residuals (RSR) were used to identify potential outliers, where large values of RSR indicate a clinical DVH that exceeds the predicted DVH by a considerable amount. A refined model was obtained for each organ by excluding outliers with large RSR values from the training cohort. The refined model was applied to the original training cohort and restricted sums of residuals were utilized to estimate potential DVH improvements. All cases were replanned and evaluated by the physician that approved the original plan. The ability of the refined models to correctly identify outliers was assessed using the residual sum between the original and replanned DVHs to quantify dosimetric gains realized under replanning. Results: Statistical analysis of average sum of residuals for rectum ( ), bladder ( ), and parotid ( ) training cohorts yielded mean values near zero and small with respect to the standard deviations, indicating that the average models are capturing the essential behavior of the training cohorts. The predictive abilities of the average rectum and bladder models were statistically indistinguishable between the training and validation sets, with and for the validation set. The refined models’ ability to detect outliers and predict achievable OAR DVHs was demonstrated by a strong correlation between predicted gains (RSR) and realized gains after replanning with sample correlation coefficients of r = 0.92 for the rectum, r = 0.88 for the bladder, and r = 0.84 for the parotid glands. Conclusions: The results demonstrate that our mathematical framework and modest training cohorts successfully predict achievable OAR DVHs based on individual patient anatomy. The models correctly identified suboptimal plans that demonstrated further OAR sparing after replanning. This modeling technique requires no manual intervention except for appropriate selection of a training set with identical evaluation criteria. Clinical implementation is in progress to evaluate impact on real‐time IMRT QC.
Load More