RI
Reza Iravani
Author with expertise in Control and Synchronization in Microgrid Systems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(0% Open Access)
Cited by:
9,196
h-index:
58
/
i10-index:
165
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Negative-Sequence Current Injection for Fast Islanding Detection of a Distributed Resource Unit

Houshang Karimi et al.Jan 1, 2008
This paper presents an active islanding detection method for a distributed resource (DR) unit which is coupled to a utility grid through a three-phase voltage-sourced converter (VSC). The method is based on injecting a negative-sequence current through the VSC controller and detecting and quantifying the corresponding negative-sequence voltage at the point of common coupling of the VSC by means of a unified three-phase signal processor (UTSP). UTSP is an enhanced phase-locked loop system which provides high degree of immunity to noise, and thus enable islanding detection based on injecting a small (3%) negative-sequence current. The negative-sequence current is injected by a negative-sequence controller which is adopted as the complementary of the conventional VSC current controller. Based on simulation studies in the PSCAD/EMTDC environment, performance of the islanding detection method under UL1741 anti-islanding test is evaluated, and its sensitivity to noise, grid short-circuit ratio, grid voltage imbalance, and deviations in the UL1741 test parameters are presented. The studies show that based on negative-sequence current injection of about 2% to 3%, islanding can be detected within 60 ms even for the worst case scenario.
0
Citation369
0
Save
0

Microgrid Protection

Ali Hooshyar et al.Mar 23, 2017
The proliferation of distributed energy resources is setting the stage for modern distribution systems to operate as microgrids, which can avoid power disruptions and serve as resources for fast recovery during macrogrid disturbances. Microgrids are, therefore, major assets to improve the grid resilience. However, the offered resilience is seriously undermined if microgrids are not properly protected in the event of faults within their own boundaries. Distribution protective devices cannot reliably protect microgrids due to the variable and often limited short-circuit capacities of microgrids. Moreover, the research on microgrid protection has not led to a commercially available microgrid relay to date and has little prospect of reaching that level in the near future. As a result, the existing options for reliable microgrid protection remain effectively the subtransmission and transmission system protective devices, e.g., directional overcurrent, distance, and differential relays. Although years of operation in macrogrids support these relays, their performance for microgrids is yet to be analyzed. This paper presents such analysis for different relay types by considering various fault and generation conditions in a microgrid. Time-domain simulations are used to identify the scenarios where the relays function correctly as well as the problematic conditions, on which future research should focus. This paper also presents a short review on direct current (dc) microgrids and their protection requirements.
0
Paper
Citation318
0
Save
0

A Decentralized Robust Control Strategy for Multi-DER Microgrids—Part I: Fundamental Concepts

Arash Etemadi et al.Jul 14, 2012
This paper presents fundamental concepts of a central power-management system (PMS) and a decentralized, robust control strategy for autonomous mode of operation of a microgrid that includes multiple distributed energy resource (DER) units. The DER units are interfaced to the utility grid through voltage-sourced converters (VSCs). The frequency of each DER unit is specified by its independent internal oscillator and all oscillators are synchronized by a common time-reference signal received from a global positioning system. The PMS specifies the voltage set points for the local controllers. A linear, time-invariant, multivariable, robust, decentralized, servomechanism control system is designed to track the set points. Each control agent guarantees fast tracking, zero steady-state error, and robust performance despite uncertainties of the microgrid parameter, topology, and the operating point. The theoretical concept of the proposed control strategy, including the existence conditions, design of the controller, robust stability analysis of the closed-loop system, time-delay tolerance, tolerance to high-frequency effects and its gain-margins, are presented in this Part I paper. Part II reports on the performance of the control strategy based on digital time-domain simulation and hardware-in-the-loop case studies.