HJ
Hannah Johnson
Author with expertise in Epidemiology and Pathogenesis of Respiratory Viral Infections
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
11
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

The human nose organoid respiratory virus model: an ex-vivo human challenge model to study RSV and SARS-CoV-2 pathogenesis and evaluate therapeutics

Anubama Rajan et al.Jul 28, 2021
There is an unmet need for pre-clinical models to understand the pathogenesis of human respiratory viruses; and predict responsiveness to immunotherapies. Airway organoids can serve as an ex-vivo human airway model to study respiratory viral pathogenesis; however, they rely on invasive techniques to obtain patient samples. Here, we report a non-invasive technique to generate human nose organoids (HNOs) as an alternate to biopsy derived organoids. We made air liquid interface (ALI) cultures from HNOs and assessed infection with two major human respiratory viruses, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Infected HNO-ALI cultures recapitulate aspects of RSV and SARS-CoV-2 infection, including viral shedding, ciliary damage, innate immune responses, and mucus hyper-secretion. Next, we evaluated the feasibility of the HNO-ALI respiratory virus model system to test the efficacy of palivizumab to prevent RSV infection. Palivizumab was administered in the basolateral compartment (circulation) while viral infection occurred in the apical ciliated cells (airways), simulating the events in infants. In our model, palivizumab effectively prevented RSV infection in a concentration dependent manner. Thus, the HNO-ALI model can serve as an alternate to lung organoids to study respiratory viruses and testing therapeutics.
18
Citation6
0
Save
0

Multiple RSV strains infecting HEp-2 and A549 cells reveal cell line-dependent differences in resistance to RSV infection

Anubama Rajan et al.Jun 16, 2021
ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of pediatric acute respiratory infection worldwide. There are currently no approved vaccines or antivirals to combat RSV disease. A few transformed cell lines and two historic strains have been extensively used to study RSV. Here we report a thorough molecular and cell biological characterization of HEp-2 and A549 cells infected with four strains of RSV representing both major subgroups as well as historic and more contemporaneous genotypes -- [RSV/A/Tracy (GA1), RSV/A/Ontario (ON), RSV/B/18537 (GB1), RSV/B/Buenos Aires (BA)] -- via measurements of viral replication kinetics and viral gene expression, immunofluorescence-based imaging of gross cellular morphology and cell-associated RSV, and measurements of host response including transcriptional changes and levels of secreted cytokines and growth factors. Our findings strongly suggest 1) the existence of a conserved difference in gene expression between RSV subgroups A and B; 2) the A549 cell line is a more stringent and natural host of replicating RSV than the HEp-2 cell line; and 3) consistent with previous studies, determining the full effects of viral genetic variation in RSV pathogenesis requires model systems as tractable as transformed cell lines but better representative of the human host. IMPORTANCE Infection with respiratory syncytial virus (RSV) early in life is essentially guaranteed and can lead to severe disease. In vitro data from two historic RSV/A strains and two cell lines, HEp-2 and A549, constitute most of our knowledge; but RSV contains ample variation from two evolving subgroups (A and B) showing recent convergent evolution. Here we measure viral action and host response in HEp-2 and A549 cells infected with four RSV strains from both subgroups and representing both historic and more contemporaneous strains. We discover a subgroup-dependent difference in viral gene expression and find A549 cells are more potently antiviral and more sensitive, albeit subtly, to viral variation. Our findings reveal important differences between RSV subgroups and two widely used cell lines and provide baseline data for experiments with model systems better representative of natural RSV infection.
0
Citation3
0
Save
0

Pediatric human nose organoids demonstrate greater susceptibility, epithelial responses, and cytotoxicity than adults during RSV infection

Gina Aloisio et al.Feb 1, 2024
Respiratory syncytial virus (RSV) is a common cause of respiratory infections, causing significant morbidity and mortality, especially in young children. Why RSV infection in children is more severe as compared to healthy adults is not fully understood. In the present study, we infect both pediatric and adult human nose organoid-air liquid interface (HNO-ALIs) cell lines with two contemporary RSV isolates and demonstrate how they differ in virus replication, induction of the epithelial cytokine response, cell injury, and remodeling. Pediatric HNO-ALIs were more susceptible to early RSV replication, elicited a greater overall cytokine response, demonstrated enhanced mucous production, and manifested greater cellular damage compared to their adult counterparts. Adult HNO-ALIs displayed enhanced mucus production and robust cytokine response that was well controlled by superior regulatory cytokine response and possibly resulted in lower cellular damage than in pediatric lines. Taken together, our data suggest substantial differences in how pediatric and adult upper respiratory tract epithelium responds to RSV infection. These differences in epithelial cellular response can lead to poor mucociliary clearance and predispose infants to a worse respiratory outcome of RSV infection.
0
Paper
Citation1
0
Save
3

Analysis and Modeling of Early Estradiol-induced GREB1 Single Allele Gene Transcription at the Population Level

Simin Ghasemi et al.Sep 1, 2023
ABSTRACT Single molecule fluorescence in situ hybridization (smFISH) can be used to visualize transcriptional activation at the single allele level. We and others have applied this approach to better understand the mechanisms of activation by steroid nuclear receptors. However, there is limited understanding of the interconnection between the activation of target gene alleles inside the same nucleus and within large cell populations. Using the GREB1 gene as an early estrogen receptor (ER) response target, we applied smFISH to track E2-activated GREB1 allelic transcription over early time points to evaluate potential dependencies between alleles within the same nucleus. We compared two types of experiments where we altered the initial status of GREB1 basal transcription by treating cells with and without the elongation inhibitor flavopiridol (FV). E2 stimulation changed the frequencies of active GREB1 alleles in the cell population independently of FV pre-treatment. In FV treated cells, the response time to hormone was delayed, albeit still reaching at 90 minutes the same levels as in cells not treated by FV. We show that the joint frequencies of GREB1 activated alleles observed at the cell population level imply significant dependency between pairs of alleles within the same nucleus. We identify probabilistic models of joint alleles activations by applying a principle of maximum entropy. For pairs of alleles, we have then quantified statistical dependency by computing their mutual information. We have then introduced a stochastic model compatible with allelic statistical dependencies, and we have fitted this model to our data by intensive simulations. This provided estimates of the average lifetime for degradation of GREB1 introns and of the mean time between two successive transcription rounds. Our approach informs on how to extract information on single allele regulation by ER from within a large population of cells, and should be applicable to many other genes. AUTHOR SUMMARY After application of a gene transcription stimulus, in this case the hormone 17 β –estradiol, on large populations of cells over a short time period, we focused on quantifying and modeling the frequencies of GREB1 single allele activations. We have established an experimental and computational pipeline to analyze large numbers of high resolution smFISH images to detect and monitor active GREB1 alleles, that can be translatable to any target gene of interest. A key result is that, at the population level, activation of individual GREB1 alleles within the same nucleus do exhibit statistically significant dependencies which we quantify by the mutual information between activation states of pairs of alleles. After noticing that frequencies of joint alleles activations observed over our large cell populations evolve smoothly in time, we have defined a population level stochastic model which we fit to the observed time course of GREB1 activation frequencies. This provided coherent estimates of the mean time between rounds of GREB1 transcription and the mean lifetime of nascent mRNAs. Our algorithmic approach and experimental methods are applicable to many other genes.
3
Citation1
0
Save