FD
Fengfei Ding
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
2,476
h-index:
21
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease

Weiguo Peng et al.May 25, 2016
Glymphatic transport, defined as cerebrospinal fluid (CSF) peri-arterial inflow into brain, and interstitial fluid (ISF) clearance, is reduced in the aging brain. However, it is unclear whether glymphatic transport affects the distribution of soluble Aβ in Alzheimer's disease (AD). In wild type mice, we show that Aβ40 (fluorescently labeled Aβ40 or unlabeled Aβ40), was distributed from CSF to brain, via the peri-arterial space, and associated with neurons. In contrast, Aβ42 was mostly restricted to the peri-arterial space due mainly to its greater propensity to oligomerize when compared to Aβ40. Interestingly, pretreatment with Aβ40 in the CSF, but not Aβ42, reduced CSF transport into brain. In APP/PS1 mice, a model of AD, with and without extensive amyloid-β deposits, glymphatic transport was reduced, due to the accumulation of toxic Aβ species, such as soluble oligomers. CSF-derived Aβ40 co-localizes with existing endogenous vascular and parenchymal amyloid-β plaques, and thus, may contribute to the progression of both cerebral amyloid angiopathy and parenchymal Aβ accumulation. Importantly, glymphatic failure preceded significant amyloid-β deposits, and thus, may be an early biomarker of AD. By extension, restoring glymphatic inflow and ISF clearance are potential therapeutic targets to slow the onset and progression of AD.
0
Citation444
0
Save
0

α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice

Fengfei Ding et al.Sep 24, 2013
Astrocyte Ca2+ signals in awake behaving mice are widespread, coordinated and differ fundamentally from the locally restricted Ca2+ transients observed ex vivo and in anesthetized animals. Here we show that the synchronized release of norepinephrine (NE) from locus coeruleus (LC) projections throughout the cerebral cortex mediate long-ranging Ca2+ signals by activation of astrocytic α1-adrenergic receptors. When LC output was triggered by either physiological sensory (whisker) stimulation or an air-puff startle response, astrocytes responded with fast Ca2+ transients that encompassed the entire imaged field (positioned over either frontal or parietal cortex). The application of adrenergic inhibitors, including α1-adrenergic antagonist prazosin, potently suppressed both evoked, as well as the frequently observed spontaneous astroglial Ca2+ signals. The LC-specific neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), which reduced cortical NE content by >90%, prevented nearly all astrocytic Ca2+ signals in awake mice. The observations indicate that in adult, unanesthetized mice, astrocytes do not respond directly to glutamatergic signaling evoked by sensory stimulation. Instead astrocytes appear to be the primary target for NE, with astrocytic Ca2+ signaling being triggered by the α1-adrenergic receptor. In turn, astrocytes may coordinate the broad effects of neuromodulators on neuronal activity.
1

Dynamic fluctuations of the locus coeruleus-norepinephrine system underlie sleep state transitions

Celia Kjaerby et al.Sep 2, 2020
Summary We normally regard sleep and wake as two distinct opposing brain states, where sleep requires silence of wake-promoting structures such as the locus coeruleus (LC)-norepinephrine (NE) system. We set out to investigate how cortical NE dynamics and NE-related astrocytic activity relates to LC population activity during sleep states. We show that LC displays regular phasic activity bouts during NREM sleep leading to a slow oscillatory pattern of prefrontal NE levels of which the majority of NE increases does not lead to awakening. NE troughs link to sleep spindles and continued NE decline transitions into REM sleep. Last, we show that prefrontal astrocytes have reduced sensitivity towards NE during sleep. Our results suggest that dynamic changes in the activity of wake-promoting systems during sleep create alternation between crucial sleep processes and broadening of sensitivity towards incoming sensory input. Highlights Extracellular levels of norepinephrine display dynamic changes during NREM and REM sleep Phasic activity of locus coeruleus neurons during NREM underlies slow norepinephrine oscillations Spindles occur at norepinephrine troughs and are abolished by norepinephrine increases Increased spindles prior to REM reflect the beginning of a long-lasting norepinephrine decline REM episodes are characterized by a sub-threshold continuous norepinephrine decline The responsiveness of astrocytic Ca 2+ to norepinephrine is reduced during sleep