YC
Yannan Chen
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
12

Whole-brain mapping reveals the divergent impact of ketamine on the dopamine system

Malika Datta et al.Apr 12, 2023
Ketamine is a multifunctional drug with clinical applications as an anesthetic, as a pain management medication and as a transformative fast-acting antidepressant. It is also abused as a recreational drug due to its dissociative property. Recent studies in rodents are revealing the neuronal mechanisms that mediate the complex actions of ketamine, however, its long-term impact due to prolonged exposure remains much less understood with profound scientific and clinical implications. Here, we develop and utilize a high-resolution whole-brain phenotyping approach to show that repeated ketamine administration leads to a dosage-dependent decrease of dopamine (DA) neurons in the behavior state-related midbrain regions and, conversely, an increase within the hypothalamus. Congruently, we show divergently altered innervations of prefrontal cortex, striatum, and sensory areas. Further, we present supporting data for the post-transcriptional regulation of ketamine-induced structural plasticity. Overall, through an unbiased whole-brain analysis, we reveal the divergent brain-wide impact of chronic ketamine exposure on the association and sensory pathways.
1

Scalable projected Light Sheet Microscopy for high-resolution imaging of living and cleared samples

Yannan Chen et al.Jun 5, 2023
Light sheet fluorescence microscopy (LSFM) is a widely used imaging technique for living and large cleared samples. However, high-performance LSFM systems are often prohibitively expensive and not easily scalable for high-throughput applications. Here, we introduce a cost-effective, scalable, and versatile high-resolution imaging framework, called projected Light Sheet Microscopy (pLSM), which repurposes readily available off-the-shelf consumer-grade components and an over-the-network control architecture to achieve high-resolution imaging of living and cleared samples. We extensively characterize the pLSM framework and showcase its capabilities through high-resolution, multi-color imaging and quantitative analysis of mouse and post-mortem human brain samples cleared using various techniques. Moreover, we show the applicability of pLSM for high-throughput molecular phenotyping of human induced pluripotent cells (iPSC)-derived brain and vessel organoids. Additionally, we utilized pLSM for comprehensive live imaging of bacterial pellicle biofilms at the air-liquid interface, uncovering their intricate layered architecture and diverse cellular dynamics across different depths. Overall, the pLSM framework has the potential to further democratize LSFM by making high-resolution light sheet microscopy more accessible and scalable.
7

Capillary connections between sensory circumventricular organs and adjacent parenchyma enable local volume transmission

Yifan Yao et al.Jul 31, 2024
Abstract Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins (Dorland 2020). Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain. The first was discovered almost a century ago and connects the median eminence to the anterior pituitary gland (Popa & Fielding 1930). The second was discovered a few years ago, and links the suprachiasmatic nucleus to the organum vasculosum of the lamina terminalis, a sensory circumventricular organ (CVO) (Yao et al. 2021). Sensory CVOs bear neuronal receptors for sensing signals in the fluid milieu (McKinley et al. 2003). They line the surface of brain ventricles and bear fenestrated capillaries, thereby lacking blood brain barriers. It is not known whether the other sensory CVOs, namely the subfornical organ (SFO), and area postrema (AP) form portal neurovascular connections with nearby parenchymal tissue. This has been difficult to establish as the structures lie at the midline and protrude into the ventricular space. To preserve the integrity of the vasculature of CVOs and their adjacent neuropil, we combined iDISCO clearing and light-sheet microscopy to acquire volumetric images of blood vessels. The results indicate that there is a portal pathway linking the capillary vessels of the SFO and the posterior septal nuclei, namely the septofimbrial nucleus and the triangular nucleus of the septum. Unlike the latter arrangement, the AP and the nucleus of the solitary tract share their capillary beds. Taken together, the results reveal that all three sensory circumventricular organs bear specialized capillary connections to adjacent neuropil, providing a direct route for diffusible signals to travel from their source to their targets.
3

Aberrant pace of cortical neuron development in brain organoids from patients with 22q11.2 deletion syndrome and schizophrenia

Sneha Rao et al.Oct 5, 2023
Abstract Adults and children afflicted with the 22q11.2 deletion syndrome (22q11.2DS) exhibit cognitive, social, and emotional impairments, and are at significantly heightened risk for schizophrenia (SCZ). The impact of this deletion on early human brain development, however, has remained unclear. Here we harness organoid models of the developing human cerebral cortex, cultivated from subjects with 22q11.2DS and SCZ, as well as unaffected control samples, to identify cell-type-specific developmental abnormalities arising from this genomic lesion. Leveraging single-cell RNA-sequencing in conjunction with experimental validation, we find that the loss of genes within the 22q11.2 locus leads to a delayed development of cortical neurons. This compromised development was reflected in an elevated proportion of actively proliferating neural progenitor cells, coupled with a decreased fraction of more mature neurons. Furthermore, we identify perturbed molecular imprints linked to neuronal maturation, observe the presence of sparser neurites, and note a blunted amplitude in glutamate-induced Ca2+ transients. The aberrant transcription program underlying impaired development contains molecular signatures significantly enriched in neuropsychiatric genetic liability. MicroRNA profiling and target gene investigation suggest that microRNA dysregulation may drive perturbations of genes governing the pace at which maturation unfolds. Using protein-protein interaction network analysis we define complementary effects stemming from additional genes residing within the deleted locus. Our study uncovers reproducible neurodevelopmental and molecular alterations due to 22q11.2 deletions. These findings have the potential to facilitate disease modeling and promote the pursuit of therapeutic interventions.
0

Capillary connections between sensory circumventricular organs and adjacent parenchyma enable local volume transmission

Yifan Yao et al.Jan 7, 2025
Abstract Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain. The first was discovered almost a century ago and connects the median eminence to the anterior pituitary gland. The second was discovered a few years ago and links the suprachiasmatic nucleus to the organum vasculosum of the lamina terminalis, a sensory circumventricular organ (CVO). Sensory CVOs bear neuronal receptors for sensing signals in the fluid milieu. They line the surface of brain ventricles and bear fenestrated capillaries thereby lacking blood–brain barriers. It is not known whether the other sensory CVOs, namely the subfornical organ (SFO), and area postrema (AP) form portal neurovascular connections with nearby parenchymal tissue. To preserve the integrity of the vasculature of CVOs and their adjacent neuropil, we combined iDISCO clearing and light‐sheet microscopy to acquire volumetric images of blood vessels and traced the vasculature in two experiments. In the first, the whole brain vasculature was registered to the Allen Brain Atlas in order to identify the nuclei to which the SFO and AP are attached. In the second study, regionally specified immunolabeling was used to identify the attachment sites and vascular connections between the AP, and the SFO to their respective parenchymal attachment sites. There are venous portal pathways linking the capillary vessels of the SFO and the posterior septal nuclei, namely the septofimbrial nucleus and the triangular nucleus of the septum. Unlike the arrangement of portal vessels, the AP and the nucleus of the solitary tract share a common capillary bed. Taken together, the results reveal that all three sensory CVOs bear direct capillary connections to adjacent neuropil, providing a direct route for diffusible signals to travel from their source to their targets.