JH
Jason Hsu
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
27
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
29

A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells

Drake Mellott et al.Oct 24, 2020
ABSTRACT K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC 50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC 50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 μM inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of ≤ 100 μM. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2, differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing. SIGNIFICANCE The virus causing COVID-19 is highly infectious and has resulted in a global pandemic. We confirm that a cysteine protease inhibitor, approved by the FDA as a clinical-stage compound, inhibits SARS-CoV-2 infection of several human and monkey cell lines with notable(nanomolar) efficacy. The mechanism of action of this inhibitor is identified as a specific inhibition of host cell cathepsin L. This in turn inhibits host cell processing of the coronaviral spike protein, a step required for cell entry. Neither of the coronaviral proteases are inhibited, and the cleavage site of spike protein processing is different from that reported in other coronaviruses. Hypotheses to explain the differential activity of the inhibitor with different cell types are discussed.
29
Citation13
0
Save
1

Efficient Neutralization of SARS-CoV-2 Omicron and Other VOCs by a Broad Spectrum Antibody 8G3

Hang Ma et al.Feb 28, 2022
Abstract Numerous mutations in the spike protein of SARS-CoV-2 B.1.1.529 Omicron variant pose a crisis for antibody-based immunotherapies. The efficacy of emergency use authorized (EUA) antibodies that developed in early SARS-CoV-2 pandemic seems to be in flounder. We tested the Omicron neutralization efficacy of an early B cell antibody repertoire as well as several EUA antibodies in pseudovirus and authentic virus systems. More than half of the antibodies in the repertoire that showed good activity against WA1/2020 previously had completely lost neutralizing activity against Omicron, while antibody 8G3 displayed non-regressive activity. EUA antibodies Etesevimab, Casirivimab, Imdevimab and Bamlanivimab were entirely desensitized by Omicron. Only Sotrovimab targeting the non-ACE2 overlap epitope showed a dramatic decrease activity. Antibody 8G3 efficiently neutralized Omicron in pseudovirus and authentic virus systems. The in vivo results showed that Omicron virus was less virulent than the WA1/2020 strain, but still caused deterioration of health and even death in mice. Treatment with 8G3 quickly cleared virus load of mice. Antibody 8G3 also showed excellent activity against other variants of concern (VOCs), especially more efficient against authentic Delta plus virus. Collectively, our results suggest that neutralizing antibodies with breadth remains broad neutralizing activity in tackling SARS-CoV-2 infection despite the universal evasion from EUA antibodies by Omicron variant.
1
Citation6
0
Save
6

A Speedy Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors

Kai Yang et al.Jul 28, 2020
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M Pro ) to digest two of its translated polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replication in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1M Pro ), we have designed and synthesized a series of SC2M Pro inhibitors that contain β-( S -2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2M Pro active site cysteine C145. All inhibitors display high potency with IC 50 values at or below 100 nM. The most potent compound MPI3 has as an IC 50 value as 8.5 nM. Crystallographic analyses of SC2M Pro bound to 7 inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549 cells. Two inhibitors MP5 and MPI8 completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M Pro inhibitors with extreme potency. Due to the urgent matter of the COVID-19 pandemic, MPI5 and MPI8 may be quickly advanced to preclinical and clinical tests for COVID-19.
6
Citation4
0
Save
1

Parsing the role of NSP1 in SARS-CoV-2 infection

Tal Fisher et al.Mar 14, 2022
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo , in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.
1
Citation2
0
Save
8

A pan-variant mRNA-LNP T cell vaccine protects HLA transgenic mice from mortality after infection with SARS-CoV-2 Beta

Brandon Carter et al.Sep 26, 2022
Abstract Clinically licensed COVID-19 vaccines ameliorate viral infection by inducing vaccinee production of neutralizing antibodies that bind to the SARS-CoV-2 Spike protein to inhibit viral cellular entry (Walsh et al., 2020; Baden et al., 2021), however the clinical effectiveness of these vaccines is transitory as viral variants arise that escape antibody neutralization (Tregoning et al., 2021; Willett et al., 2022). Vaccines that solely rely upon a T cell response to combat viral infection could be transformational because they can be based on highly conserved short peptide epitopes that hold the potential for pan-variant immunity, but a mRNA-LNP T cell vaccine has not been shown to be sufficient for effective antiviral prophylaxis. Here we show that a mRNA-LNP vaccine based on highly conserved short peptide epitopes activates a CD8 + and CD4 + T cell response that prevents mortality in HLA-A*02:01 transgenic mice infected with the SARS-CoV-2 Beta variant of concern (B.1.351). In mice vaccinated with the T cell vaccine, 24% of the nucleated cells in lung were CD8 + T cells on day 7 post infection. This was 5.5 times more CD8 + T cell infiltration of the lungs in response to infection compared to the Pfizer-BioNTech Comirnaty® vaccine. Between days 2 and 7 post infection, the number of CD8 + T cells in the lung increased in mice vaccinated with the T cell vaccine and decreased in mice vaccinated with Comirnaty®. The T cell vaccine did not produce neutralizing antibodies, and thus our results demonstrate that SARS-CoV-2 viral infection can be controlled by a T cell response alone. Our results suggest that further study is merited for pan-variant T cell vaccines, and that T cell vaccines may be relevant for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.
8
Citation2
0
Save
0

Characterization of Unique Pathological Features of COVID-Associated Coagulopathy: Studies with AC70 hACE2 Transgenic Mice Highly Permissive to SARS-CoV-2 Infection

Aleksandra Drelich et al.Oct 30, 2023
Abstract COVID-associated coagulopathy seemly plays a key role in post-acute sequelae of SARS-CoV-2 infection. However, the underlying pathophysiological mechanisms are poorly understood, largely due to the lack of suitable animal models that recapitulate key clinical and pathological symptoms. Here, we fully characterized AC70 line of human ACE2 transgenic (AC70 hACE2 Tg) mice for SARS-CoV-2 infection. We noted that this model is highly permissive to SARS-CoV-2 with values of 50% lethal dose and infectious dose as ∼ 3 and ∼ 0.5 TCID 50 of SARS-CoV-2, respectively. Mice infected with 10 5 TCID 50 of SARS-CoV-2 rapidly succumbed to infection with 100% mortality within 5 days. Lung and brain were the prime tissues harboring high viral titers, accompanied by histopathology. However, viral RNA and many inflammatory mediators could be readily detectable in other organs, suggesting the nature of a systemic infection. Lethal challenge of AC70 hACE2 Tg mice caused acute onset of leukopenia, lymphopenia, along with an increased neutrophil-to-lymphocyte ratio. Importantly, infected animals recapitulated key features of COVID-19-associated coagulopathy, including significantly elevated levels of D-dimer, t-PA, PAI-1, and circulating NETs, along with activated platelet/endothelium marker. Immunohistochemical staining with anti-PF4 antibody revealed profound platelet aggregates especially within blocked veins of the lungs. ANXA2 is known to interact with S100A10 to form heterotetrametric complexes, serving as coreceptors for t-PA to regulate membrane fibrinolysis. Thus, our results revealing elevated IgG type anti-ANXA2 antibody production, downregulated de novo ANXA2/S100A10 synthesis, and reduced AnxA2/S100A10 association in infected mice support an important role of this protein in the pathogenesis of acute COVID-19. In summary, we showed that acute SARS-CoV-2 infection of AC70 hACE2 Tg mice triggered a hypercoagulable state coexisting with ill-regulated fibrinolysis, accompanied by dysregulation of ANXA2 system, which might serve as druggable targets for development of antithrombotic and/or anti-fibrinolytic agents to attenuate pathogenesis of COVID-19. Author Summary Accumulating evidence strongly suggests that COVID-associated coagulopathy characterized by dysregulation of the coagulation cascade, fibrinolysis system and pulmonary microvascular immune-thrombosis during different stages of SARS-CoV-2 infection may have a “yet-to-be fully defined” impact on the development of post-acute sequela of COVID-19. Herein we initially reported a comprehensively characterized AC70 hACE2 Tg mouse model for SARS-CoV-2 infection and disease. We next demonstrated the subsequent onset of imbalanced coagulation and fibrinolysis pathways in infected Tg mice, focusing on dysregulated formation of ANXA2/S100A10 complexes, key coreceptors for t-PA that regulates membrane fibrinolysis, in which elevated production of autoantibodies against ANXA2 induced by SARS-CoV-2 might play an intriguing role. Taken together, we demonstrated that AC70 hACE2 Tg mice lethally challenged with SARS-CoV-2 recapitulated several features of COVID-associated coagulopathy observed in patients and highlighted the potential role of ANXA2 in this phenomenon. Thus, ANXA2 might serve as a potentially novel druggable target to attenuate COVID-19-associated thrombotic events.
0

Characterizing neuroinvasion and neuropathology of SARS-CoV-2 by using AC70 human ACE2 transgenic mice

Jason Hsu et al.Jun 21, 2024
COVID-19 presents with a plethora of neurological signs and symptoms despite being characterized as a respiratory disease, including seizures, anxiety, depression, amnesia, attention deficits, and alterations in consciousness. The olfactory nerve is widely accepted as the neuroinvasive route by which the etiological agent SARS-CoV-2 enters the brain, but the trigeminal nerve is an often-overlooked additional route. Based on this consensus, we initially conducted a pilot experiment investigating the olfactory nerve route of SARS-CoV-2 neuroinvasion via intranasal inoculation in AC70 human ACE2 transgenic mice. Notably, we found that the trigeminal ganglion is an early and highly efficient site of viral replication, which then rapidly spread widely throughout the brain where neurons were primarily targeted. Despite the extensive viral infection across the brain, obvious evidence of tissue pathology including inflammatory infiltration, glial activation, and apoptotic cell deaths were not consistently observed, albeit inflammatory cytokines were significantly induced. However, the expression levels of different genes related to neuronal function, including the neurotransmitter dopamine pathway as well as synaptic function, and markers of neuronal damage were altered as compared to mock-infected mice. Our findings suggest that the trigeminal nerve can be a neuroinvasive route complementary to the olfactory nerve and that the ensuing neuroinvasion presented a unique neuropathological profile. This study provides insights into potential neuropathogenic mechanisms utilized by coronaviruses.
0
5.0
9
Save