DJ
David Jones
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
3,546
h-index:
69
/
i10-index:
169
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Effect of Carbohydrate Mouth Rinse on 1-h Cycle Time Trial Performance

James Carter et al.Dec 1, 2004
Purpose and Method: To investigate the possible role of carbohydrate (CHO) receptors in the mouth in influencing exercise performance, seven male and two female endurance cyclists (V̇O2max 63.2 ± 2.7 (mean ± SE) mL·kg−1·min−1) completed two performance trials in which they had to accomplish a set amount of work as quickly as possible (914 ± 40 kJ). On one occasion a 6.4% maltodextrin solution (CHO) was rinsed around the mouth for every 12.5% of the trial completed. On the other occasion, water (PLA) was rinsed. Subjects were not allowed to swallow either the CHO solution or water, and each mouthful was spat out after a 5-s rinse. Results: Performance time was significantly improved with CHO compared with PLA (59.57 ± 1.50 min vs 61.37 ± 1.56 min, respectively, P = 0.011). This improvement resulted in a significantly higher average power output during the CHO compared with the PLA trial (259 ± 16 W and 252 ± 16 W, respectively, P = 0.003). There were no differences in heart rate or rating of perceived exertion (RPE) between the two trials (P > 0.05). Conclusion: The results demonstrate that carbohydrate mouth rinse has a positive effect on 1-h time trial performance. The mechanism responsible for the improvement in high-intensity exercise performance with exogenous carbohydrate appears to involve an increase in central drive or motivation rather than having any metabolic cause. The nature and role of putative CHO receptors in the mouth warrants further investigation.
0

Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9.

Christopher Thomas et al.Dec 1, 1997
In many interactions between plants and their pathogens, resistance to infection is specified by plant resistance (R) genes and corresponding pathogen avirulence (Avr) genes. In tomato, the Cf-4 and Cf-9 resistance genes map to the same location but confer resistance to Cladosporium fulvum through recognition of different avirulence determinants (AVR4 and AVR9) by a molecular mechanism that has yet to be determined. Here, we describe the cloning and characterization of Cf-4, which also encodes a membrane-anchored extracellular glycoprotein. Cf-4 contains 25 leucine-rich repeats, which is two fewer than Cf-9. The proteins have > 91% identical amino acids. DNA sequence comparison suggests that Cf-4 and Cf-9 are derived from a common progenitor sequence. Amino acid differences distinguishing Cf-4 and Cf-9 are confined to their N termini, delimiting a region that determines the recognitional specificity of ligand binding. The majority of these differences are in residues interstitial to those of the leucine-rich repeat consensus motif. Many of these residues are predicted to form a solvent-exposed surface that can interact with the cognate ligand. Both Cf-4 and Cf-9 are located within a 36-kb region comprising five tandemly duplicated homologous genes. These results provide further insight into the molecular basis of pathogen perception by plants and the organization of complex R gene loci.
0
Citation402
0
Save
64

The structural repertoire ofFusarium oxysporumf. sp.lycopersicieffectors revealed by experimental and computational studies

Daniel Yu et al.Dec 15, 2021
Abstract Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein x-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici ( Fol ). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol d ual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol- tomato, and by extension plant-fungal interactions, which will assist the development of novel control and engineering strategies to combat plant pathogens.
64
Citation12
0
Save
46

The crystal structure of SnTox3 from the necrotrophic fungusParastagonospora nodorumreveals a unique effector fold and insights into Kex2 protease processing of fungal effectors

Megan Outram et al.May 27, 2020
Summary Plant pathogens cause disease through secreted effector proteins, which act to modulate host physiology and promote infection. Typically, the sequences of effectors provide little functional information and further targeted experimentation is required. Here, we utilised a structure/function approach to study SnTox3, an effector from the necrotrophic fungal pathogen Parastagonospora nodorum , which causes cell death in wheat-lines carrying the sensitivity gene Snn3 . We developed a workflow for the production of SnTox3 in a heterologous host that enabled crystal structure determination. We show this approach can be successfully applied to effectors from other pathogenic fungi. Complementing this, an in-silico study uncovered the prevalence of an expanded subclass of effectors from fungi. The β-barrel fold of SnTox3 is a novel fold among fungal effectors. We demonstrate that SnTox3 is a pre-pro-protein and that the protease Kex2 removes the pro-domain. Our in-silico studies suggest that Kex2-processed pro-domain (designated here as K2PP) effectors are common in fungi, and we demonstrate this experimentally for effectors from Fusarium oxysporum f sp. lycopersici . We propose that K2PP effectors are highly prevalent among fungal effectors. The identification and classification of K2PP effectors has broad implications for the approaches used to study their function in fungal virulence.
46
Citation6
0
Save
25

Optimised production of disulfide-bonded fungal effectors in E. coli using CyDisCo and FunCyDisCo co-expression approaches

Daniel Yu et al.Aug 31, 2021
Abstract Effectors are a key part of the arsenal of plant pathogenic fungi and promote pathogen virulence and disease. Effectors typically lack sequence similarity to proteins with known functional domains and motifs, limiting our ability to predict their functions and understand how they are recognised by plant hosts. As a result, cross-disciplinary approaches involving structural biology and protein biochemistry are often required to decipher and better characterise effector function. These approaches are reliant on high yields of relatively pure protein, which often requires protein production using a heterologous expression system. For some effectors, establishing an efficient production system can be difficult, particularly those that require multiple disulfide bonds to achieve their naturally folded structure. Here, we describe the use of a co-expression system within the heterologous host E. coli termed CyDisCo (cytoplasmic disulfide bond formation in E. coli ) to produce disulfide bonded fungal effectors. We demonstrate that CyDisCo and a naturalised co-expression approach termed FunCyDisCo (Fungi-CyDisCo) can significantly improve the production yields of numerous disulfide bonded effectors from diverse fungal pathogens. The ability to produce large quantities of functional recombinant protein has facilitated functional studies and crystallisation of several of these reported fungal effectors. We suggest this approach could be useful when investigating the function and recognition of a broad range of disulfide-bond containing effectors.
25
Citation3
0
Save