DS
David Stacey
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
2,053
h-index:
23
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic atlas of the human plasma proteome

Benjamin Sun et al.May 29, 2018
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development. A genetic atlas of the human plasma proteome, comprising 1,927 genetic associations with 1,478 proteins, identifies causes of disease and potential drug targets.
0
Citation1,519
0
Save
0

Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene ( AUTS2 ) in the regulation of alcohol consumption

Gunter Schümann et al.Apr 6, 2011
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene ( AUTS2 ) was associated with alcohol consumption at genome-wide significance ( P = 4 × 10 −8 to P = 4 × 10 −9 ). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples ( P = 0.026) and significant ( P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila ( P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
0
Citation267
0
Save
0

ProGeM: A framework for the prioritisation of candidate causal genes at molecular quantitative trait loci

David Stacey et al.Dec 8, 2017
Quantitative trait locus (QTL) mapping of molecular phenotypes such as metabolites, lipids, and proteins through genome-wide association studies (GWAS) represents a powerful means of highlighting molecular mechanisms relevant to human diseases. However, a major challenge of this approach is to identify the causal gene(s) at the observed QTLs. Here we present a framework for the 'Prioritisation of candidate causal Genes at Molecular QTLs' (ProGeM), which incorporates biological domain-specific annotation data alongside genome annotation data from multiple repositories. We assessed the performance of ProGeM using a reference set of 227 previously reported and extensively curated metabolite QTLs. For 98% of these loci, the expert-curated gene was one of the candidate causal genes prioritised by ProGeM. Benchmarking analyses revealed that 69% of the causal candidates were nearest to the sentinel variant at the investigated molecular QTLs, indicating that genomic proximity is the most reliable indicator of 'true positive' causal genes. In contrast, cis-gene expression QTL data led to three false positive candidate causal gene assignments for every one true positive assignment. We provide evidence that these conclusions also apply to other molecular phenotypes, suggesting that ProGeM is a powerful and versatile tool for annotating molecular QTLs. ProGeM is freely available via GitHub.