A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
LG
Lifeng Gao
Author with expertise in Genetic Diversity and Breeding of Wheat
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
719
h-index:
16
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation

Jizeng Jia et al.Mar 22, 2013
Sequencing and analysing the diploid genome and transcriptome of Aegilops tauschii provide new insights into the role of this genome in enabling the adaptation of bread wheat and are a step towards understanding the very large and complicated hexaploid genomes of wheat species. The hexaploid genome of bread wheat Triticum aestivum, designated AABBDD, evolved as a result of hybridization between three ancestral grasses. Two papers published in the issue of Nature present genome sequences and analysis of two of these wheat progenitors. First, the genome sequence of the diploid wild wheat T. urartu (ancestor of the A genome), which resembles cultivated wheat more strongly than either Aegilops speltoides (the B ancestor) or Ae. tauschii (the D donor). And second, the Ae. tauschii genome, together with an analysis of its transcriptome. These genomes and their analyses will be powerful tools for the study of complex, polyploid wheat genomes and a valuable resource for genetic improvement of wheat. About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD)1,2. Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour2. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.
0
Citation707
0
Save
4

1RS.1BL molecular resolution provides novel contributions to wheat improvement

Zhengang Ru et al.Sep 14, 2020
SUMMARY Wheat-rye 1RS.1BL translocation has a significant impact on wheat yield and hence food production globally. However, the genomic basis of its contributions to wheat improvement is undetermined. Here, we generated a high-quality assembly of 1RS.1BL translocation comprising 748,715,293 bp with 4,996 predicted protein-coding genes. We found the size of 1RS is larger than 1BS with the active centromere domains shifted to the 1RS side instead of the 1BL side in Aikang58 (AK58). The gene alignment showed excellent synteny with 1BS from wheat and genes from 1RS were expressed well in wheat especially for 1RS where expression was higher than that of 1BS for the grain-20DPA stage associated with greater grain weight and negative flour quality attributes. A formin-like-domain protein FH14 ( TraesAK58CH1B01G010700 ) was important in regulating cell division. Two PPR genes were most likely the genes for the multi fertility restoration locus Rf multi . Our data not only provide the high-resolution structure and gene complement for the 1RS.1BL translocation, but also defined targets for enhancing grain yield, biotic and abiotic stress, and fertility restoration in wheat.
4
Citation12
0
Save