AC
Adam Carroll
Author with expertise in Molecular Mechanisms of Photosynthesis and Photoprotection
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
917
h-index:
23
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Absence of ALTERNATIVE OXIDASE1a in Arabidopsis Results in Acute Sensitivity to Combined Light and Drought Stress

Estelle Giraud et al.Apr 18, 2008
Treatment of Arabidopsis (Arabidopsis thaliana) alternative oxidase1a (aox1a) mutant plants with moderate light under drought conditions resulted in a phenotypic difference compared with ecotype Columbia (Col-0), as evidenced by a 10-fold increase in the accumulation of anthocyanins in leaves, alterations in photosynthetic efficiency, and increased superoxide radical and reduced root growth at the early stages of seedling growth. Analysis of metabolite profiles revealed significant changes upon treatment in aox1a plants typical of combined stress treatments, and these were less pronounced or absent in Col-0 plants. These changes were accompanied by alteration in the abundance of a variety of transcripts during the stress treatment, providing a molecular fingerprint for the stress-induced phenotype of aox1a plants. Transcripts encoding proteins involved in the synthesis of anthocyanins, transcription factors, chloroplastic and mitochondrial components, cell wall synthesis, and sucrose and starch metabolism changed, indicating that effects were not confined to mitochondria, where the AOX1a protein is located. Microarray and quantitative reverse transcription-polymerase chain reaction analysis revealed that transcripts typically induced upon stress treatment or involved in antioxidant defense systems, especially chloroplast-located antioxidant defense components, had altered basal levels in untreated aox1a plants, suggesting a significant change in the basal equilibrium of signaling pathways that regulate these components. Taken together, these results indicate that aox1a plants have a greatly altered stress response even when mitochondria or the mitochondrial electron transport chain are not the primary target of the stress and that AOX1a plays a broad role in determining the normal redox balance in the cell.
0

Remodeled Respiration in ndufs4 with Low Phosphorylation Efficiency Suppresses Arabidopsis Germination and Growth and Alters Control of Metabolism at Night

Etienne Meyer et al.Aug 12, 2009
Abstract Respiratory oxidative phosphorylation is a cornerstone of cellular metabolism in aerobic multicellular organisms. The efficiency of this process is generally assumed to be maximized, but the presence of dynamically regulated nonphosphorylating bypasses implies that plants can alter phosphorylation efficiency and can benefit from lowered energy generation during respiration under certain conditions. We characterized an Arabidopsis (Arabidopsis thaliana) mutant, ndufs4 (for NADH dehydrogenase [ubiquinone] fragment S subunit 4), lacking complex I of the respiratory chain, which has constitutively lowered phosphorylation efficiency. Through analysis of the changes to mitochondrial function as well as whole cell transcripts and metabolites, we provide insights into how cellular metabolism flexibly adapts to reduced phosphorylation efficiency and why this state may benefit the plant by providing moderate stress tolerance. We show that removal of the single protein subunit NDUFS4 prevents assembly of complex I and removes its function from mitochondria without pleiotropic effects on other respiratory components. However, the lack of complex I promotes broad changes in the nuclear transcriptome governing growth and photosynthetic function. We observed increases in organic acid and amino acid pools in the mutant, especially at night, concomitant with alteration of the adenylate content. While germination is delayed, this can be rescued by application of gibberellic acid, and root growth assays of seedlings show enhanced tolerance to cold, mild salt, and osmotic stress. We discuss these observations in the light of recent data on the knockout of nonphosphorylating respiratory bypass enzymes that show opposite changes in metabolites and stress sensitivity. Our data suggest that the absence of complex I alters the adenylate control of cellular metabolism.
0

Mitochondrial Malate Dehydrogenase Lowers Leaf Respiration and Alters Photorespiration and Plant Growth in Arabidopsis

Tiago Tomaz et al.Sep 27, 2010
Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms linking respiration and photosynthesis in plants.
0

Systems analysis of long-term heat stress responses in the C4 grass Setaria viridis

Peng Zhang et al.Jan 8, 2025
Abstract Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high temperature stress for two weeks (42°C, compared to 28°C). This resulted in stunted growth, but surprisingly had little impact on leaf thickness, leaf area-based photosynthetic rates and bundle sheath leakiness. Dark respiration rates increased and there were major alterations in carbon and nitrogen metabolism in the heat-stressed plants. Abscisic acid and indole-acetic acid–amino acid conjugates accumulated in the heat-stressed plants, consistent with transcriptional changes. Leaf transcriptomics, proteomics and metabolomics analyses were carried out and mapped onto the metabolic pathways of photosynthesis, respiration, carbon/nitrogen metabolism and phytohormone biosynthesis and signaling. An in-depth analysis of correlations between transcripts and their corresponding proteins revealed strong differences between groups in the strengths and signs of correlations. Overall, many stress signaling pathways were upregulated, consistent with multiple signals leading to reduced plant growth. A systems-based model of the plant response to long-term heat stress is presented based on the oxidative stress, phytohormone and sugar signaling pathways.
0

Omics Discovery Index - Discovering and Linking Public Omics Datasets

Yasset Pérez‐Riverol et al.Apr 18, 2016
Biomedical data, in particular omics datasets are being generated at an unprecedented rate. This is due to the falling costs of generating experimental data, improved accuracy and better accessibility to different omics platforms such as genomics, proteomics and metabolomics. As a result, the number of deposited datasets in public repositories originating from various omics approaches has increased dramatically in recent years. This increase in public data deposition of omics results is a good starting point, but opens up a series of new challenges. For example the research community must now find more efficient ways for storing, organizing and providing access to biomedical data across platforms. These challenges range from achieving a common representation framework for the datasets and the associated metadata from different omics fields, to the availability of efficient methods, protocols and file formats for data exchange between multiple repositories. Therefore, there is a great need for development of new platforms and applications to make possible to search datasets across different omics fields, making such information accessible to the end-user. In this context, we introduce the Omics Discovery Index (OmicsDI - http://www.ebi.ac.uk/Tools/omicsdi), an integrated and open source platform facilitating the access and dissemination of omics datasets. OmicsDI provides a unique infrastructure to integrate datasets coming from multiple omics studies, including at present proteomics, genomics and metabolomics, as a distributed resource.
0

Systems analysis of long-term heat stress responses in the C4grassSetaria viridis

Peng Zhang et al.Nov 13, 2023
Abstract A substantial number of C 4 plants are utilized as food and fodder crops and often display improved resource use efficiency compared to C 3 counterparts. However, their response to future extreme climates such as heatwaves is less understood. Setaria viridis , an emerging C 4 model grass closely related to important C4 crops, was grown under high temperature for two weeks (42°C as compared to 28°C). High temperature resulted in stunted growth, but surprisingly had little impact on leaf area based photosynthetic rates. Rates of dark respiration significantly increased and there were major alterations in carbon and nitrogen metabolism in the heat-stressed plants, including reduced starch levels, accumulation of soluble sugars and an increase in leaf nitrogen content. Measurements of major phytohormones revealed a dramatic increase in abscisic acid in the heat-stressed plants. Leaf transcriptomics, proteomics and metabolomics analyses were carried out and mapped onto metabolic pathways of photosynthesis, respiration, carbon/nitrogen metabolism and hormone synthesis and signaling. Overall, upregulation of a number of stress-signaling pathways was observed, consistent with multiple potent signals leading to reduced plant growth. A systems model of plant response is presented based on oxidative stress, hormone and sugar signaling pathways.