BL
Boram Lee
Author with expertise in Molecular Mechanisms of Kidney Development and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
8
h-index:
15
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
79

Symmetry breaking of hPSCs in micropattern generates a polarized spinal cord-like organoid (pSCO) with dorsoventral organization

Kyubin Seo et al.Sep 19, 2021
Abstract Brain organoid research is advancing, but generation of organoids with proper axis formation, which could lead to spatially ordered structures for complex brain structure and function, still remains a challenge. Axis formation and related spatial cell organization in the CNS are initiated by the symmetry breaking during the early embryo development. It has been demonstrated that the geometrically confined culture of human pluripotent stem cells (hPSCs) can be used to induce symmetry breaking and regionalized cell differentiation. In this study, we generated a polarized spinal cord organoid with a self-organized dorsoventral (DV) organization, using 2D cell patterning by geometric confinement. Initially, the application of caudalization signals to hPSCs promoted the regionalized cell differentiation along the radial axis and sprouting-like protrusion morphogenesis in cell colonies confined to ECM protein micropatterns. Detachment of colonies turned them into extended spinal cord-like organoids which maintained center- and edge-derived two poles. Further analyses including single cell RNA sequencing and spatial transcriptome analysis unveiled that these organoids contained rich repertoire of developing spinal cord cells and exhibited the spatially ordered DV domain formation along the long axis without external organizing signals. Modulation of BMP and Shh signaling can control the extent of DV coverage in organoids following the principles of embryo patterning. Our study provides a simple, and precisely controllable method to generate spatially-ordered organoids for understanding of biological principles of cell patterning and axis formation during neural development.
79
Citation8
0
Save
0

In vivo selection in non-human primates identifies AAV capsids for on-target CSF delivery to spinal cord

Killian Hanlon et al.Jun 5, 2024
Systemic administration of adeno-associated virus (AAV) vectors for spinal cord gene therapy has challenges including toxicity at high doses and pre-existing immunity that reduces efficacy. Intrathecal (IT) delivery of AAV vectors into cerebral spinal fluid can avoid many issues, although distribution of the vector throughout the spinal cord is limited, and vector entry to the periphery sometimes initiates hepatotoxicity. Here we performed biopanning in non-human primates (NHPs) with an IT injected AAV9 peptide display library. We identified top candidates by sequencing inserts of AAV DNA isolated from whole tissue, nuclei, or nuclei from transgene-expressing cells. These barcoded candidates were pooled with AAV9 and compared for biodistribution and transgene expression in spinal cord and liver of IT injected NHPs. Most candidates displayed increased retention in spinal cord compared with AAV9. Greater spread from the lumbar to the thoracic and cervical regions was observed for several capsids. Furthermore, several capsids displayed decreased biodistribution to the liver compared with AAV9, providing a high on-target/low off-target biodistribution. Finally, we tested top candidates in human spinal cord organoids and found them to outperform AAV9 in efficiency of transgene expression in neurons and astrocytes. These capsids have potential to serve as leading-edge delivery vehicles for spinal cord-directed gene therapies.