HS
Hyeonwi Son
Author with expertise in Mechanisms and Management of Neuropathic Pain
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
9
h-index:
14
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Imaging sensory transmission and neuronal plasticity in primary sensory neurons with genetically-encoded voltage indicator, ASAP4.4-Kv

Yan Zhang et al.May 23, 2021
+8
J
G
Y
Abstract Detection of somatosensory inputs requires conversion of external stimuli into electrical signals by activation of primary sensory neurons. The mechanisms by which heterogeneous primary sensory neurons encode different somatosensory inputs remains unclear. In vivo dorsal root ganglia (DRG) imaging using genetically-encoded Ca 2+ indicators (GECIs) is currently the best technique for this purpose by providing an unprecedented spatial and populational resolution. It permits the simultaneous imaging of >1800 neurons/DRG in live mice. However, this approach is not ideal given that Ca 2+ is a second messenger and has inherently slow response kinetics. In contrast, genetically-encoded voltage indicators (GEVIs) have the potential to track voltage changes in multiple neurons in real time but often lack the brightness and dynamic range required for in vivo use. Here, we used soma-targeted ASAP4.4-Kv, a novel GEVI, to dissect the temporal dynamics of noxious and non-noxious neuronal signals during mechanical, thermal, or chemical stimulation in DRG of live mice. ASAP4.4-Kv is sufficiently bright and fast enough to optically characterize individual neuron coding dynamics. Notably, using ASAP4.4-Kv, we uncovered cell-to-cell electrical synchronization between adjacent DRG neurons and robust dynamic transformations in sensory coding following tissue injury. Finally, we found that a combination of GEVI and GECI imaging empowered in vivo optical studies of sensory signal processing and integration mechanisms with optimal spatiotemporal analysis. Highlights In vivo ultra fast and sensitive dynamic voltage imaging of peripheral primary sensory neurons by a newly generated genetically-encoded voltage indicator. Identification of mechanical, thermal, or chemical stimuli-evoked voltage signals with superior temporal resolution. Single-cell detection of changes in sub- and suprathreshold voltage dynamics across different disease conditions. Combination of voltage (by ASAP4.4-Kv) and Ca 2+ (by Pirt-GCaMP3) signals to facilitate the understanding of signal processing and integration of primary sensory neurons, especially for noxious versus non-noxious sensation.
4
Citation5
0
Save
0

cytoNet: Spatiotemporal Network Analysis of Cell Communities

Arun Mahadevan et al.Aug 24, 2017
+14
C
B
A
Abstract We introduce cytoNet, a cloud-based tool to characterize cell populations from microscopy images. cytoNet quantifies spatial topology and functional relationships in cell communities using principles of network science. Capturing multicellular dynamics through graph features, cytoNet also evaluates the effect of cell-cell interactions on individual cell phenotypes. We demonstrate cytoNet’s capabilities in four case studies: 1) characterizing the temporal dynamics of neural progenitor cell communities during neural differentiation, 2) identifying communities of pain-sensing neurons in vivo , 3) capturing the effect of cell community on endothelial cell morphology, and 4) investigating the effect of laminin α4 on perivascular niches in adipose tissue. The analytical framework introduced here can be used to study the dynamics of complex cell communities in a quantitative manner, leading to a deeper understanding of environmental effects on cellular behavior. The versatile, cloud-based format of cytoNet makes the image analysis framework accessible to researchers across domains. Availability and Implementation QutubLab.org/how | cytoNet contact: cytoNetProject@gmail.com Brain Initiative Alliance Toolmaker cytoNet site: https://www.braininitiative.org/toolmakers/resources/cytonet/ Author / Lay Summary cytoNet provides an online tool to rapidly characterize relationships between objects within images and video frames. To study complex tissue, cell and subcellular topologies, cytoNet integrates vision science with the mathematical technique of graph theory. This allows the method to simultaneously identify environmental effects on single cells and on network topology. cytoNet has versatile use across neuroscience, stem cell biology and regenerative medicine. cytoNet applications described in this study include: (1) characterizing how sensing pain alters neural circuit activity, (2) quantifying how vascular cells respond to neurotrophic stimuli overexpressed in the brain after injury or exercise, (3) delineating features of fat tissue that may confer resistance to obesity and (4) uncovering structure-function relationships of human stem cells as they transform into neurons.
0
Citation4
0
Save
0

Elucidation of neuronal activity in mouse models of TMJ injury by in vivo GCaMP Ca2+ imaging of intact trigeminal ganglion neurons

Hyeonwi Son et al.Jan 16, 2024
+3
R
J
H
Abstract Patients with temporomandibular disorders (TMD) typically experience facial pain and discomfort or tenderness in the temporomandibular joint (TMJ), causing disability in daily life. Unfortunately, existing treatments for TMD are not always effective, creating a need for more advanced, mechanism-based therapies. In this study, we used in vivo GCaMP3 Ca 2+ imaging of intact trigeminal ganglia (TG) to characterize functional activity of the TG neurons in vivo , specifically in TMJ animal models. This system allows us to observe neuronal activity in intact anatomical, physiological, and clinical conditions and to assess neuronal function and response to various stimuli. We observed a significant increase in spontaneously and transiently activated neurons responding to mechanical, thermal, and chemical stimuli in the TG of forced mouth open (FMO) mice. An inhibitor of the CGRP receptor significantly attenuated FMO-induced facial hypersensitivity. In addition, we confirmed the attenuating effect of CGRP antagonist on FMO-induced sensitization by in vivo GCaMP3 Ca 2+ imaging of intact TG. Our results contribute to unraveling the role and activity of TG neurons in the TMJ pain animal models of TMD, bringing us closer understanding the pathophysiological processes underlying TMD. Our study also illustrates the utility of in vivo GCaMP3 Ca 2+ imaging of intact TG for studies aimed at developing more targeted and effective treatments for TMD.
0

Forced mouth opening induces post-traumatic hyperalgesia and associated peripheral sensitization after temporomandibular joints injury in mice

Ishraq Alshanqiti et al.Jan 16, 2024
+7
H
S
I
ABSTRACT Temporomandibular disorder (TMD) is the most prevalent painful condition in the craniofacial area. The pathophysiology of TMD is not fully understood, and it is necessary to understand pathophysiology underlying painful TMD conditions to develop more effective treatment methods. Recent studies suggested that external or intrinsic trauma to TMJ is associated with chronic TMD in patients. Here, we investigated the effects of the TMJ trauma through forced-mouth opening (FMO) in mice to determine pain behaviors and peripheral sensitization of trigeminal nociceptors. FMO increased mechanical hyperalgesia assessed by von Frey test, spontaneous pain-like behaviors assessed by mouse grimace scale, and anxiety-like behaviors assessed by open-field test. In vivo GCaMP Ca 2+ imaging of intact trigeminal ganglia (TG) showed increased spontaneous Ca 2+ activity and mechanical hypersensitivity of TG neurons in the FMO compared to the sham group. Ca 2+ responses evoked by cold, heat, and capsaicin stimuli were also increased. FMO-induced hyperalgesia and neuronal hyperactivities were not sex dependent. TG neurons sensitized following FMO were primarily small to medium-sized nociceptive afferents. Consistently, most TMJ afferents in the TG were small-sized peptidergic neurons expressing calcitonin gene-related peptides, whereas nonpeptidergic TMJ afferents were relatively low. FMO-induced intraneural inflammation in the surrounding tissues of the TMJ indicates potentially novel mechanisms of peripheral sensitization following TMJ injury. These results suggest that the TMJ injury leads to persistent post-traumatic hyperalgesia associated with peripheral sensitization of trigeminal nociceptors.
1

Meclizine and metabotropic glutamate receptor agonists attenuate severe pain and primary sensory neuron Ca2+activity in chemotherapy-induced peripheral neuropathy

John Shannonhouse et al.May 23, 2021
+4
M
Y
J
Abstract Chemotherapy-induced peripheral neuropathy (CIPN) affects about 68% of patients undergoing chemotherapy and causes severe neuropathic pain which is debilitating health problem and greatly reduces quality of life. Cisplatin is a commonly used platinum-based chemotherapeutic drug known to cause CIPN, possibly by causing oxidative stress damage to primary sensory neurons. Metabotropic glutamate receptors (mGluRs) are widely hypothesized to be involved in pain processing. Meclizine is an H1 histamine receptor antagonist which is known to have neuroprotective effects including anti-oxidative effect. Here, we used a mouse model of cisplatin-induced CIPN to test agonists of mGluR8 and group II mGluR as well as meclizine as interventions to reduce cisplatin-induced pain. We performed behavioral pain tests and in vivo entire DRG neurons Ca 2+ imaging using genetically-encoded Ca 2+ indicator, Pirt-GCaMP3 to monitor different drug interventions on a populational ensemble level. CIPN induced increased spontaneous Ca 2+ activity in DRG neurons, increased Ca 2+ transient amplitudes, and hyperresponses to mechanical, thermal, and chemical stimuli. We found mGluR8 agonist, DCPG, group II mGluR agonist, LY379268, and Histamine1 receptor antagonist, meclizine all significantly attenuated mechanical and thermal pain caused by CIPN. LY379268 and meclizine, but not DCPG, attenuated DRG neuronal Ca 2+ activity elevated by CIPN. Furthermore, meclizine attenuated cisplatin-induced weight loss. These results suggest group II mGluR agonist, mGluR8 agonist, and meclizine are excellent candidates to study for mechanisms and new treatment option for CIPN.
1

Mast cell-specific receptor/corticotropin-releasing factor axis regulates alcohol withdrawal-associated headache

Hyeonwi Son et al.May 23, 2021
+4
H
Y
H
Abstract Rehabilitation from alcohol addiction or abuse is challenging due to alcohol withdrawal symptoms. Headache is a severe alcohol withdrawal symptom that frequently contributes to rehabilitation failure. Despite the need for treating alcohol withdrawal-induced headache, there is no appropriate therapeutic option available. Development of improved therapeutics will depend on obtaining a clearer understanding of alcohol withdrawal-induced headache pain mechanisms. Here, we show that the mast cell-specific receptor MrgprB2 controls development of alcohol withdrawal-induced headache. Withdrawing alcohol from alcohol-acclimated mice induces strong headache behaviors, including facial allodynia, facial pain expressions, and reduced walking movement, symptoms often observed in humans suffering from headache. Observed pain behaviors were abolished in MrgprB2-deficient mice. We observed in vivo spontaneous activation and hypersensitization of trigeminal ganglia neurons in alcohol withdrawal mice, but not in MrgprB2-deficient mice. Corticotropin-releasing factor (CRF) was increased in dura mater after alcohol withdrawal. Injection of CRF into dura mater resulted in activation of trigeminal ganglia neurons and vasodilation, which was accompanied by headache behavior. In cells, CRF evoked Ca 2+ transients via MrgprB2 or human MrgprX2. The results indicate that alcohol withdrawal causes headache via mast cell degranulation in dura mater. The process is under control of MrgprB2/MrgprX2, which would appear to represent a potential target for treating alcohol withdrawal-related headache.
2

Capsaicin pretreatment alleviates postoperative pain and reduces primary sensory neuron Ca2+ activity

Hirotake Ishida et al.May 23, 2021
+3
H
Y
H
Abstract After surgeries, especially thoracotomy incision, patients develop unbearable pain. Opioids are used for reducing pain but often cause serious side effects. Previously, we found that capsaicin pretreatment of the incision area alleviated spontaneous and thermal pain in a postoperative pain animal model. In the present study, we aimed to monitor primary sensory neuron Ca 2+ activity in in vivo dorsal root ganglia (DRG) in a postoperative pain model using Pirt-GCaMP3 treated with capsaicin or controls. Intraplantar injection of capsaicin (0.05%) alleviated spontaneous, mechanical, and thermal postoperative pain. The Ca 2+ response in in vivo DRG and in in situ spinal cord was significantly enhanced in the ipsilateral side compared to contralateral side or naive control. Primary sensory nerve fiber length was significantly decreased in the incision skin area in capsaicin-pretreated animals detected by immunohistochemistry and placental alkaline phosphatase (PLAP) staining. Thus, capsaicin pretreatment alleviates postoperative pain by suppressing Ca 2+ response due to degeneration of primary sensory nerve fibers in the skin.