QC
Qu Chen
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
671
h-index:
25
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Renal clearable catalytic gold nanoclusters for in vivo disease monitoring

Colleen Loynachan et al.Sep 1, 2019
Ultrasmall gold nanoclusters (AuNCs) have emerged as agile probes for in vivo imaging, as they exhibit exceptional tumour accumulation and efficient renal clearance properties. However, their intrinsic catalytic activity, which can enable an increased detection sensitivity, has yet to be explored for in vivo sensing. By exploiting the peroxidase-mimicking activity of AuNCs and the precise nanometre-size filtration of the kidney, we designed multifunctional protease nanosensors that respond to disease microenvironments to produce a direct colorimetric urinary readout of the disease state in less than one hour. We monitored the catalytic activity of AuNCs in the collected urine of a mouse model of colorectal cancer in which tumour-bearing mice showed a 13-fold increase in colorimetric signal compared to healthy mice. The nanosensors were eliminated completely through hepatic and renal excretion within four weeks of injection with no evidence of toxicity. We envision that this modular approach will enable the rapid detection of a diverse range of diseases by exploiting their specific enzymatic signatures. Catalytic gold nanoclusters that respond to protease activity in vivo and are excreted in urine can offer a quick colorimetric tool for disease detection in resource-limited settings.
0

Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 With Graphene Electrodes

Haijie Tan et al.Jul 21, 2016
In this report, graphene (Gr) is used as a 2D electrode and monolayer WS2 as the active semiconductor in ultrathin photodetector devices. All of the 2D materials are grown by chemical vapor deposition (CVD) and thus pose as a viable route to scalability. The monolayer thickness of both electrode and semiconductor gives these photodetectors ∼2 nm thickness. We show that graphene is different to conventional metal (Au) electrodes due to the finite density of states from the Dirac cones of the valence and conduction bands, which enables the photoresponsivity to be modulated by electrostatic gating and light input control. We demonstrate lateral Gr–WS2–Gr photodetectors with photoresponsivities reaching 3.5 A/W under illumination power densities of 2.5 × 107 mW/cm2. The performance of monolayer WS2 is compared to bilayer WS2 in photodetectors and we show that increased photoresponsivity is achieved in the thicker bilayer WS2 crystals due to increased optical absorption. This approach of incorporating graphene electrodes in lateral TMD based devices provides insights on the contact engineering in 2D optoelectronics, which is crucial for the development of high performing ultrathin photodetector arrays for versatile applications.
0

CDK1 controls CHMP7-dependent nuclear envelope reformation

Alberto Gatta et al.Apr 21, 2020
Abstract Through membrane sealing and disassembly of spindle microtubules, the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) machinery has emerged as a key player in the regeneration of a sealed nuclear envelope (NE) during mitotic exit, and in the repair of this organelle during interphase rupture. ESCRT-III assembly at the NE occurs transiently during mitotic exit and is initiated when CHMP7, an ER-localised ESCRT-II/ESCRT-III hybrid protein, interacts with the Inner Nuclear Membrane (INM) protein LEM2. Whilst classical nucleocytoplasmic transport mechanisms have been proposed to separate LEM2 and CHMP7 during interphase, it is unclear how CHMP7 assembly is suppressed in mitosis when NE and ER identities are mixed. Here, we use live cell imaging and protein biochemistry to examine the biology of these proteins during mitotic exit. Firstly, we show that CHMP7 plays an important role in the dissolution of LEM2 clusters that form at the NE during M-exit. Secondly, we show that CDK1 phosphorylates CHMP7 upon mitotic entry at Ser3 and Ser441 and that this phosphorylation suppresses CHMP7’s interaction with LEM2, limiting its assembly during M-phase. We show that spatiotemporal differences in the dephosphorylation of CHMP7 license its assembly at the NE during telophase, but restrict its assembly on the ER at this time. Without CDK1 phosphorylation, CHMP7 undergoes inappropriate assembly in the peripheral ER during M-exit, capturing LEM2 and downstream ESCRT-III components. Lastly, we establish that a microtubule network is dispensable for ESCRT-III assembly at the reforming nuclear envelope. These data identify a key cell-cycle control programme allowing ESCRT-III-dependent nuclear regeneration.
0
Citation2
0
Save
0

The Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy

Wenjuan Wang et al.Feb 28, 2024
ABSTRACT Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo , deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis.
0

Horizontal gene transfer-initiated reorganization of lipid metabolism drives lifestyle innovation in a eukaryote

Bhagyashree Rao et al.Aug 21, 2024
Abstract Horizontal gene transfer is a source of metabolic innovation and adaptation to new environments. Yet, how horizontally transferred metabolic functionalities are integrated into host cell biology remains an open question. Here, we use the fission yeast Schizosaccharomyces japonicus to probe how eukaryotic lipid metabolism is rewired in response to the acquisition of a horizontally transferred squalene-hopene cyclase Shc1. We show that Shc1-dependent production of hopanoids, the structural mimics of eukaryotic sterols, allows S. japonicus to thrive in anoxia, where sterol biosynthesis is not possible. We further demonstrate that glycerophospholipid fatty acyl asymmetry, prevalent in S. japonicus, is crucial for accommodating both sterols and hopanoids in membranes, and explain how Shc1 functions alongside the native sterol biosynthetic pathway to support membrane properties. Through engineering experiments in the sister species S. pombe, which naturally lacks Shc1, we show that the acquisition of Shc1 may entail new physiological traits; however, to maximize Shc1 performance, sterol biosynthesis must be dampened. Our work sheds new light on the mechanisms underlying cellular integration of horizontally transferred genes in eukaryotes and provides broader insights into the evolution of membrane organization and function.