NL
Ning Li
Author with expertise in Mass Spectrometry Techniques with Proteins
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
439
h-index:
32
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exhaustively Identifying Cross-Linked Peptides with a Linear Computational Complexity

Fengchao Yu et al.Dec 28, 2016
Chemical cross-linking coupled with mass spectrometry is a powerful tool to study protein-protein interactions and protein conformations. Two linked peptides are ionized and fragmented to produce a tandem mass spectrum. In such an experiment, a tandem mass spectrum contains ions from two peptides. The peptide identification problem becomes a peptide-peptide pair identification problem. Currently, most existing tools don't search all possible pairs due to the quadratic time complexity. Consequently, a significant percentage of linked peptides are missed. In our earlier work, we developed a tool named ECL to search all pairs of peptides exhaustively. While ECL does not miss any linked peptides, it is very slow due to the quadratic computational complexity, especially when the database is large. Furthermore, ECL uses a score function without statistical calibration, while researchers have demonstrated that using a statistical calibrated score function can achieve a higher sensitivity than using an uncalibrated one. Here, we propose an advanced version of ECL, named ECL 2.0. It achieves a linear time and space complexity by taking advantage of the additive property of a score function. It can analyze a typical data set containing tens of thousands of spectra using a large-scale database containing thousands of proteins in a few hours. Comparison with other five state-of-the-art tools shows that ECL 2.0 is much faster than pLink, StavroX, ProteinProspector, and ECL. Kojak is the only one tool that is faster than ECL 2.0. But Kojak does not exhaustively search all possible peptide pairs. We also adopt an e-value estimation method to calibrate the original score. Comparison shows that ECL 2.0 has the highest sensitivity among the state-of-the-art tools. The experiment using a large-scale in vivo cross-linking data set demonstrates that ECL 2.0 is the only tool that can find PSMs passing the false discovery rate threshold. The result illustrates that exhaustive search and well calibrated score function are useful to find PSMs from a huge search space.
0

Understanding the limit of open search in the identification of peptides with post-translational modifications — A simulation-based study

Jiaan Dai et al.Mar 27, 2018
Motivation: Analyzing tandem mass spectrometry data to recognize peptides in a sample is the fundamental task in computational proteomics. Traditional peptide identification algorithms perform well when identifying unmodified peptides. However, when peptides have post-translational modifications (PTMs), these methods cannot provide satisfactory results. Recently, Chick et al., 2015 and Yu et al., 2016 proposed the spectrum-based and tag-based open search methods, respectively, to identify peptides with PTMs. While the performance of these two methods is promising, the identification results vary greatly with respect to the quality of tandem mass spectra and the number of PTMs in peptides. This motivates us to systematically study the relationship between the performance of open search methods and quality parameters of tandem mass spectrum data, as well as the number of PTMs in peptides. Results: Through large-scale simulations, we obtain the performance trend when simulated tandem mass spectra are of different quality. We propose an analytical model to describe the relationship between the probability of obtaining correct identifications and the spectrum quality as well as the number of PTMs. Based on the analytical model, we can quantitatively describe the necessary condition to effectively apply open search methods. Availability: Source codes of the simulation are available at http://bioinformatics.ust.hk/PST.html. Contact: boningli@ust.hk or eeyu@ust.hk Supplementary information: Supplementary data are available at Bioinformatics online.