ZL
Zan Li
Author with expertise in Additive Manufacturing of Metallic Components
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
2,507
h-index:
23
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Additively manufactured hierarchical stainless steels with high strength and ductility

Yinmin Wang et al.Oct 30, 2017
Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications. 3D-printed steels with hierarchically heterogeneous microstructures demonstrate high strength and ductility.
0

The Role of Dislocation Type in the Thermal Stability of Cellular Structures in Additively Manufactured Austenitic Stainless Steel

Dayong An et al.Jul 1, 2024
The ultrafine cellular structure promotes the extraordinary mechanical performance of metals manufactured by laser powder-bed-fusion (L-PBF). An in-depth understanding of the mechanisms governing the thermal stability of such structures is crucial for designing reliable L-PBF components for high-temperature applications. Here, characterizations and 3D discrete dislocation dynamics simulations are performed to comprehensively understand the evolution of cellular structures in 316L stainless steel during annealing. The dominance of screw-type dislocation dipoles in the dislocation cells is reported. However, the majority of dislocations in sub-grain boundaries (SGBs) are geometrically necessary dislocations (GNDs) with varying types. The disparity in dislocation types can be attributed to the variation in local stacking fault energy (SFE) arising from chemical heterogeneity. The presence of screw-type dislocations facilitates the unpinning of dislocations from dislocation cells/SGBs, resulting in a high dislocation mobility. In contrast, the migration of SGBs with dominating edge-type GNDs requires collaborative motion of dislocations, leading to a sluggish migration rate and an enhanced thermal stability. This work emphasizes the significant role of dislocation type in the thermal stability of cellular structures. Furthermore, it sheds light on how to locally tune dislocation structures with desired dislocation types by adjusting local chemistry-dependent SFE and heat treatment.