KK
K. Kirch
Author with expertise in Particle Physics and High-Energy Collider Experiments
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
3,844
h-index:
35
/
i10-index:
130
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Electron energy spectra, fluxes, and day-night asymmetries of 8 B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory

B. Aharmim et al.Nov 30, 2005
Results are reported from the complete salt phase of the Sudbury Neutrino Observatory experiment in which NaCl was dissolved in the D$_2$O target. The addition of salt enhanced the signal from neutron capture, as compared to the pure D$_2$O detector. By making a statistical separation of charged-current events from other types based on event-isotropy criteria, the effective electron recoil energy spectrum has been extracted. In units of $ 10^6$ cm$^{-2}$ s$^{-1}$, the total flux of active-flavor neutrinos from $^8$B decay in the Sun is found to be $4.94^{+0.21}_{-0.21}{(stat)}^{+0.38}_{-0.34}{(syst)}$ and the integral flux of electron neutrinos for an undistorted $^8$B spectrum is $1.68^{+0.06}_{-0.06}{(stat)}^{+0.08}_{-0.09}{(syst)}$; the signal from ($\nu_x$,e) elastic scattering is equivalent to an electron-neutrino flux of $2.35^{+0.22}_{-0.22}{(stat)}^{+0.15}_{-0.15}{(syst)}$. These results are consistent with those expected for neutrino oscillations with the so-called Large Mixing Angle parameters, and also with an undistorted spectrum. A search for matter-enhancement effects in the Earth through a possible day-night asymmetry in the charged-current integral rate is consistent with no asymmetry. Including results from other experiments, the best-fit values for two-neutrino mixing parameters are $\Delta m^2 = (8.0^{+0.6}_{-0.4}) \times 10^{-5}$ eV$^2$ and $\theta = 33.9 ^{+2.4}_{-2.2}$ degrees.
0

Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields

C. Abel et al.Nov 14, 2017
We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spin-precession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10−24≤ma≤10−17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40.Received 29 August 2017DOI:https://doi.org/10.1103/PhysRevX.7.041034Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasDark matterPhysical SystemsAxionsNeutronsTechniquesNuclear spin resonanceGravitation, Cosmology & AstrophysicsNuclear PhysicsAtomic, Molecular & Optical