ПС
Павел Стоев
Author with expertise in Species Distribution Modeling and Climate Change Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
4,443
h-index:
26
/
i10-index:
50
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The seven impediments in invertebrate conservation and how to overcome them

Pedro Cardoso et al.Aug 15, 2011
Despite their high diversity and importance for humankind, invertebrates are often neglected in biodiversity conservation policies. We identify seven impediments to their effective protection: (1) invertebrates and their ecological services are mostly unknown to the general public (the public dilemma); (2) policymakers and stakeholders are mostly unaware of invertebrate conservation problems (the political dilemma); (3) basic science on invertebrates is scarce and underfunded (the scientific dilemma); (4) most species are undescribed (the Linnean shortfall); (5) the distribution of described species is mostly unknown (the Wallacean shortfall); (6) the abundance of species and their changes in space and time are unknown (the Prestonian shortfall); (7) species ways of life and sensitivities to habitat change are largely unknown (the Hutchinsonian shortfall). Numerous recent developments in taxonomy, inventorying, monitoring, data compilation, statistical analysis and science communication facilitate overcoming these impediments in both policy and practice. We suggest as possible solutions for the public dilemma: better public information and marketing. For the political dilemma: red-listing, legal priority listing and inclusion in environmental impact assessment studies. For the scientific dilemma: parataxonomy, citizen science programs and biodiversity informatics. For the Linnean shortfall: biodiversity surrogacy, increased support for taxonomy and advances in taxonomic publications. For the Wallacean shortfall: funding of inventories, compilation of data in public repositories and species distribution modeling. For the Prestonian shortfall: standardized protocols for inventorying and monitoring, widespread use of analogous protocols and increased support for natural history collections. For the Hutchinsonian shortfall: identifying good indicator taxa and studying extinction rates by indirect evidence.
0
Paper
Citation880
0
Save
0

Variation in wood density determines spatial patterns inAmazonian forest biomass

Timothy Baker et al.Apr 21, 2004
Abstract Uncertainty in biomass estimates is one of the greatest limitations to models of carbon flux in tropical forests. Previous comparisons of field‐based estimates of the aboveground biomass (AGB) of trees greater than 10 cm diameter within Amazonia have been limited by the paucity of data for western Amazon forests, and the use of site‐specific methods to estimate biomass from inventory data. In addition, the role of regional variation in stand‐level wood specific gravity has not previously been considered. Using data from 56 mature forest plots across Amazonia, we consider the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in AGB. Mean stand‐level wood specific gravity, on a per stem basis, is 15.8% higher in forests in central and eastern, compared with northwestern Amazonia. This pattern is due to the higher diversity and abundance of taxa with high specific gravity values in central and eastern Amazonia, and the greater diversity and abundance of taxa with low specific gravity values in western Amazonia. For two estimates of AGB derived using different allometric equations, basal area explains 51.7% and 63.4%, and stand‐level specific gravity 45.4% and 29.7%, of the total variation in AGB. The variation in specific gravity is important because it determines the regional scale, spatial pattern of AGB. When weighting by specific gravity is included, central and eastern Amazon forests have significantly higher AGB than stands in northwest or southwest Amazonia. The regional‐scale pattern of species composition therefore defines a broad gradient of AGB across Amazonia.
0
Paper
Citation762
0
Save
0

Increasing biomass in Amazonian forest plots

Timothy Baker et al.Mar 29, 2004
A previous study by Phillips et al . of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old–growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above–ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 ± 0.43 Mg per hectare per year (ha −1 yr −1 ), where 1 ha = 10 4 m 2 ), or 0.98 ± 0.38 Mg ha −1 yr −1 if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand–level change than was reported by Phillips et al . Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional–scale carbon sink in old–growth Amazonian forests during the previous two decades.
0
Paper
Citation507
0
Save