CV
Carla Vogt
Author with expertise in Magnesium Alloys for Biomedical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
3,485
h-index:
27
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines☆

Frank Feyerabend et al.Oct 2, 2009
Degradable magnesium alloys for biomedical application are on the verge of being used clinically. Rare earth elements (REEs) are used to improve the mechanical properties of the alloys, but in more or less undefined mixtures. For some elements of this group, data on toxicity and influence on cells are sparse. Therefore in this study the in vitro cytotoxicity of the elements yttrium (Y), neodymium (Nd), dysprosium (Dy), praseodymium (Pr), gadolinium (Gd), lanthanum (La), cerium (Ce), europium (Eu), lithium (Li) and zirconium (Zr) was evaluated by incubation with the chlorides (10-2000 microM); magnesium (Mg) and calcium (Ca) were tested at higher concentrations (200 and 50mM, respectively). The influence on viability of human osteosarcoma cell line MG63, human umbilical cord perivascular (HUCPV) cells and mouse macrophages (RAW 264.7) was determined, as well as the induction of apoptosis and the expression of inflammatory factors (TNF-alpha, IL-1alpha). Significant differences between the applied cells could be observed. RAW exhibited the highest and HUCPV the lowest sensitivity. La and Ce showed the highest cytotoxicity of the analysed elements. Of the elements with high solubility in magnesium alloys, Gd and Dy seem to be more suitable than Y. The focus of magnesium alloy development for biomedical applications should include most defined alloy compositions with well-known tissue-specific and systemic effects.
0

In vivo corrosion and corrosion protection of magnesium alloy LAE442☆

Frank Witte et al.Oct 13, 2009
The aim of this study was to investigate whether the extruded magnesium alloy LAE442 reacts in vivo with an appropriate host response and to investigate how an additional magnesium fluoride (MgF2) coating influences the in vivo corrosion rate. Forty cylinders were machined from extruded LAE442 and 20 of these were coated additionally with MgF2 and implanted into the medial femur condyle of adult rabbits. Synchrotron-radiation-based X-ray computed micro-tomography (SRμCT) was used to quantitatively analyse corrosion non-destructively in vivo and comparisons were made to magnesium degradation rates based on area measurements of the remaining metal on uncalcified sections. Blood concentrations of the alloying elements were measured below toxicological limits. The MgF2 layer was no longer detected after 4 weeks of implantation by particle-induced gamma emission, and the MgF2 coating reduced the blood content of alloying elements during the first 6 weeks of implantation with no elevated fluoride concentration in the adjacent bone. Histopathological examinations of liver showed in 9 out of 40 cases minimal infiltrations of heterophil granulocytes of unknown origin (5 LAE442, 4 LAE442 + MgF2). The kidneys were mainly regular in structure. The synovial tissue showed a granular cell infiltration as a temporary observation in the LAE442 + MgF2 group after 2 weeks. No subcutaneous gas cavities were observed clinically and on postoperative X-rays in all animals. All specimens were scanned by SRμCT at 2, 4, 6 and 12 weeks postoperatively before uncalcified sections were performed. All magnesium implants have been observed in direct bone contact and without a fibrous capsule. Localized pitting corrosion occurred in coated and uncoated magnesium implants. This study shows that the extruded magnesium alloy LAE442 provides low corrosion rates and reacts in vivo with an acceptable host response. The in vivo corrosion rate can be further reduced by additional MgF2 coating.