FF
Frank Feyerabend
Author with expertise in Magnesium Alloys for Biomedical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
3,221
h-index:
44
/
i10-index:
84
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Biodegradable magnesium–hydroxyapatite metal matrix composites

Frank Witte et al.Jan 6, 2007
Recent studies indicate that there is a high demand to design magnesium alloys with adjustable corrosion rates and suitable mechanical properties. An approach to this challenge might be the application of metal matrix composite (MMC) based on magnesium alloys. In this study, a MMC made of magnesium alloy AZ91D as a matrix and hydroxyapatite (HA) particles as reinforcements have been investigated in vitro for mechanical, corrosive and cytocompatible properties. The mechanical properties of the MMC-HA were adjustable by the choice of HA particle size and distribution. Corrosion tests revealed that HA particles stabilised the corrosion rate and exhibited more uniform corrosion attack in artificial sea water and cell solutions. The phase identification showed that all samples contained hcp-Mg, Mg17Al12, and HA before and after immersion. After immersion in artificial sea water CaCO3 was found on MMC-HA surfaces, while no formation of CaCO3 was found after immersion in cell solutions with and without proteins. Co-cultivation of MMC-HA with human bone derived cells (HBDC), cells of an osteoblasts lineage (MG-63) and cells of a macrophage lineage (RAW264.7) revealed that RAW264.7, MG-63 and HBDC adhere, proliferate and survive on the corroding surfaces of MMC-HA. In summary, biodegradable MMC-HA are cytocompatible biomaterials with adjustable mechanical and corrosive properties.
0

Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines☆

Frank Feyerabend et al.Oct 2, 2009
Degradable magnesium alloys for biomedical application are on the verge of being used clinically. Rare earth elements (REEs) are used to improve the mechanical properties of the alloys, but in more or less undefined mixtures. For some elements of this group, data on toxicity and influence on cells are sparse. Therefore in this study the in vitro cytotoxicity of the elements yttrium (Y), neodymium (Nd), dysprosium (Dy), praseodymium (Pr), gadolinium (Gd), lanthanum (La), cerium (Ce), europium (Eu), lithium (Li) and zirconium (Zr) was evaluated by incubation with the chlorides (10-2000 microM); magnesium (Mg) and calcium (Ca) were tested at higher concentrations (200 and 50mM, respectively). The influence on viability of human osteosarcoma cell line MG63, human umbilical cord perivascular (HUCPV) cells and mouse macrophages (RAW 264.7) was determined, as well as the induction of apoptosis and the expression of inflammatory factors (TNF-alpha, IL-1alpha). Significant differences between the applied cells could be observed. RAW exhibited the highest and HUCPV the lowest sensitivity. La and Ce showed the highest cytotoxicity of the analysed elements. Of the elements with high solubility in magnesium alloys, Gd and Dy seem to be more suitable than Y. The focus of magnesium alloy development for biomedical applications should include most defined alloy compositions with well-known tissue-specific and systemic effects.
0

Antibacterial biodegradable Mg-Ag alloys

Di Tie et al.Jun 16, 2013
The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing.Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver.In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase.After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver.Mg(OH) 2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product.Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release.In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility.Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%.In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.
0
Citation217
0
Save