DL
Dunyue Lu
Author with expertise in Multipotent Mesenchymal Stem Cells
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(29% Open Access)
Cited by:
4,213
h-index:
45
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Therapeutic Benefit of Intravenous Administration of Bone Marrow Stromal Cells After Cerebral Ischemia in Rats

Jieli Chen et al.Apr 1, 2001
Background and Purpose —We tested the hypothesis that intravenous infusion of bone marrow derived–marrow stromal cells (MSCs) enter the brain and reduce neurological functional deficits after stroke in rats. Methods —Rats (n=32) were subjected to 2 hours of middle cerebral artery occlusion (MCAO). Test groups consisted of MCAO alone (group 1, n=6); intravenous infusion of 1×10 6 MSCs at 24 hours after MCAO (group 2, n=6); or infusion of 3×10 6 MSCs (group 3, n=7). Rats in groups 1 to 3 were euthanized at 14 days after MCAO. Group 4 consisted of MCAO alone (n=6) and group 5, intravenous infusion of 3×10 6 MSCs at 7 days after MCAO (n=7). Rats in groups 4 and 5 were euthanized at 35 days after MCAO. For cellular identification, MSCs were prelabeled with bromodeoxyuridine. Behavioral tests (rotarod, adhesive-removal, and modified Neurological Severity Score [NSS]) were performed before and at 1, 7, 14, 21, 28, and 35 days after MCAO. Immunohistochemistry was used to identify MSCs or cells derived from MSCs in brain and other organs. Results —Significant recovery of somatosensory behavior and Neurological Severity Score ( P <0.05) were found in animals infused with 3×10 6 MSCs at 1 day or 7 days compared with control animals. MSCs survive and are localized to the ipsilateral ischemic hemisphere, and a few cells express protein marker phenotypic neural cells. Conclusions —MSCs delivered to ischemic brain tissue through an intravenous route provide therapeutic benefit after stroke. MSCs may provide a powerful autoplastic therapy for stroke.
0
Citation1,624
0
Save
0

Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat

Jieli Chen et al.Jul 30, 2003
Abstract The present study investigates the induction of neurogenesis, reduction of apoptosis, and promotion of basic fibroblast growth factor (bFGF) expression as possible mechanisms by which treatment of stroke with bone marrow stromal cells (MSCs) improves neurological functional recovery. Additionally, for the first time, we treated cerebral ischemia in female rats with intraveneous administration of MSCs. Female rats were subjected to 2 hr of middle cerebral artery occlusion (MCAo), followed by an injection of 3 × 10 6 male (for Y chromosome labeling) rat MSCs or phosphate‐buffered saline (PBS) into the tail vein 24 hr after MCAo. All animals received daily injection of bromodeoxyuridine (BrdU; 50 mg/kg, i.p.) for 13 days after treatment for identification of newly synthesized DNA. Animals were sacrificed at 14 days after MCAo. Behavioral tests (rotarod and adhesive‐removal tests) were performed. In situ hybridization, immunohistochemistry, and terminal deoxynucleotidyltransferase (TdT)‐mediated dUTP‐biotin nick‐end labeling (TUNEL) were performed to identify transplanted MSCs (Y chromosome), BrdU, bFGF, and apoptotic cells in the brain. Significant recovery of behavior was found in MSC‐treated rats at 7 days in the somatosensory test and at 14 days in the motor test after MCAo compared with control, PBS‐treated animals ( P < .05). MSCs were found to survive and preferentially localize to the ipsilateral ischemic hemisphere. Significantly more BrdU‐positive cells were located in the subventricular zone ( P < .05), and significantly fewer apoptotic cells and more bFGF immunoreactive cell were found in the ischemic boundary area ( P < .05) of MSC‐treated rats than in PBS‐treated animals. Here we demonstrate that intravenously administered male MSCs increase bFGF expression, reduce apoptosis, promote endogenous cellular proliferation, and improve functional recovery after stroke in female rats. © 2003 Wiley‐Liss, Inc.
0
Citation559
0
Save
0

Treatment of Traumatic Brain Injury in Adult Rats with Intravenous Administration of Human Bone Marrow Stromal Cells

Asim Mahmood et al.Sep 1, 2003
We investigated the effect of human bone marrow stromal cells (hMSCs) administered intravenously on functional outcome after traumatic brain injury in adult rats.hMSCs were harvested from three human donors. A controlled cortical impact was delivered to 27 adult male rats to induce traumatic brain injury, and 24 hours after injury, hMSCs were injected into the tail veins of the rats (n = 18). These rats were divided into two groups: Group 1 was administered 1 x 10(6) hMSCs, and Group 2 was administered 2 x 10(6) hMSCs. Group 3 (control) rats received saline intravenously. Neurological function was evaluated according to the rotarod test and modified neurological severity score. All rats were killed 1 month after injury, and immunohistochemical staining was performed on the brain sections to identify donor hMSCs. To study the phenotypic differentiation of hMSCs, coronal brain sections were stained for neuronal (Tuj1) and astrocytic (glial fibrillary acidic protein) markers.Treatment with 2 x 10(6) hMSCs significantly improved the rats' functional outcomes (P < 0.05). The transplanted cells successfully migrated into injured brain and were preferentially localized around the injury site. Some of the donor cells also expressed the neuronal and astrocytic markers.These data suggest that hMSCs may be a potential therapy for patients who have sustained traumatic brain injuries.
0
Citation480
0
Save
0

Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells

Yi Li et al.Nov 11, 2004
Abstract The long‐term (4‐month) responses to treatment of stroke in the older adult rat, using rat bone marrow stromal cells (MSCs), have not been investigated. Retired breeder rats were subjected to middle cerebral artery occlusion (MCAo) alone, or injected intravenously with 3 × 10 6 MSCs, at 7 days after MCAo. Functional recovery was measured using an adhesive‐removal patch test and a modified neurological severity score. Bromodeoxyuridine, a cell proliferation marker, was injected daily for 14 before sacrifice. Animals were sacrificed 4 months after stroke. Double immunostaining was used to identify cell proliferation and cell types for axons, astrocytes, microglia, and oligodendrocytes. MSC treatment induced significant improvement in neurological outcome after MCAo compared with control rats. MSC treatment reduced the thickness of the scar wall ( P < 0.05) and reduced the numbers of microglia/macrophages within the scar wall ( P < 0.01). Double staining showed increased expression of an axonal marker (GAP‐43), among reactive astrocytes in the scar boundary zone and in the subventricular zone in the treated rats. Bromodeoxyuridine in cells preferentially colocalized with markers of astrocytes (GFAP) and oligodendrocytes (RIP) in the ipsilateral hemisphere, and gliogenesis was enhanced in the subventricular zone of the rats treated with MSCs. This is the first report to show that MSCs injected at 7 days after stroke improve long‐term neurological outcome in older animals. Brain tissue repair is an ongoing process with reactive gliosis, which persists for at least 4 months after stroke. Reactive astrocytes responding to MSC treatment of ischemia may also promote axonal regeneration during long‐term recovery. © 2004 Wiley‐Liss, Inc.
0

Intravenous Administration of Marrow Stromal Cells (MSCs) Increases the Expression of Growth Factors in Rat Brain after Traumatic Brain Injury

Asim Mahmood et al.Jan 1, 2004
This study was designed to investigate the effects of intravenous administration of marrow stromal cells (MSCs) on the expression of growth factors in rat brain after traumatic brain injury (TBI). The fate of transplanted MSCs and expression of growth factors was examined by immunohistochemistry. In addition, the level of growth factors was measured quantitatively using enzyme linked immunosorbent assay (ELISA). Growth factors that were studied included nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF). For immunohistochemical studies, 12 male Wistar rats were subjected to TBI and then divided into three groups with the first group receiving no treatment, the second group receiving saline (placebo) and the third group receiving MSCs intravenously 1 day after TBI. The neurological function of rats was studied by using Rotarod motor test and modified neurological severity scores. The animals were sacrificed 15 days after TBI and brain sections stained by immunohistochemistry to study the distribution of MSCs as well as expression of growth factors NGF, BDNF, and bFGF. For quantitative analysis, a second set of male Wistar rats (n = 18) was subjected to TBI and then injected with either saline (n = 9) or MSCs (n = 9) 1 day after injury. These rats were sacrificed on days 2, 5, and 8 after TBI and brain extracts used to measure NGF, BDNF, and bFGF. We found that after transplantation, MSCs preferentially migrated into the injured hemisphere and there was a statistically significant improvement in the functional outcome of MSC-treated rats compared to control rats. NGF, BDNF, and bFGF were expressed in the injured brain of both treated as well as control rats; however, quantitative ELISA studies showed that expression of NGF and BDNF was significantly increased (p < 0.05) in the treated group. This study shows that intravenous administration of MSCs after TBI increases the expression of growth factors (NGF, BDNF), which possibly contributes to the improvement in functional outcome seen in these rats.
0
Citation345
0
Save
0

Simvastatin-Mediated Upregulation of VEGF and BDNF, Activation of the PI3K/Akt Pathway, and Increase of Neurogenesis Are Associated with Therapeutic Improvement after Traumatic Brain Injury

Hongtao Wu et al.Feb 1, 2008
This study was undertaken to evaluate the effect of simvastatin, a cholesterol-lowering agent, on the Akt-mediated signaling pathway and neurogenesis in the dentate gyrus (DG) of the hippocampus in rats after traumatic brain injury (TBI). Adult male Wistar rats were divided into three groups: (1) sham group (n = 8); (2) saline control group (n = 40); and (3) simvastatin-treated group (n = 40). Controlled cortical impact (CCI) injury was performed over the left parietal lobe. Simvastatin was administered orally at a dose of 1 mg/kg starting at day 1 after TBI and then daily for 14 days. Bromodeoxyuridine (BrdU) was injected intraperitoneally into rats. A modified Morris Water Maze (WM) task was performed between 31 and 35 days after treatment to test spatial memory (n = 8/group). Animals were sacrificed at 1, 3, 7, 14, and 35 days after treatment (n = 8/group/time point). Western blot was utilized to investigate the changes in the Akt-mediated signaling pathway. Enzyme-linked immunosorbent assay (ELISA) analyses were employed to measure vascular endothelial growth factor (VEGF) and brain-derived neurotrophin factor (BDNF) expression. Immunohistochemical and fluorescent staining were performed to detect the BrdU- and neuronal nuclei (NeuN)/BrdU-positive cells. Our data show that simvastatin treatment increases phosphorylation of v-akt murine thymoma viral oncogene homolog (Akt), glycogen synthase kinase-3β (GSK-3β), and cAMP response element-binding proteins (CREB); elevates the expression of BDNF and VEGF in the DG; increases cell proliferation and differentiation in the DG; and enhances the recovery of spatial learning. These data suggest that the neurorestorative effect of simvastatin may be mediated through activation of the Akt-mediated signaling pathway, subsequently upregulating expression of growth factors and inducing neurogenesis in the DG of the hippocampus, thereby leading to restoration of cognitive function after TBI in rats.