We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe <1 event/(tonne day keVee), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses mχ within 3–6 GeV/c2, DM-electron scattering for mχ>30 MeV/c2, and absorption of dark photons and axionlike particles for mχ within 0.186–1 keV/c2.Received 29 July 2019Revised 7 November 2019DOI:https://doi.org/10.1103/PhysRevLett.123.251801Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasDark matterParticle dark matterPhysical SystemsWeakly interacting massive particlesTechniquesDark matter detectorsTime-projection chambersGravitation, Cosmology & AstrophysicsParticles & Fields