AM
Alessandro Mondini
Author with expertise in Landslide Hazards and Risk Assessment
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
2,679
h-index:
27
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Landslide inventory maps: New tools for an old problem

Fausto Guzzetti et al.Feb 23, 2012
Landslides are present in all continents, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, we estimate that landslide maps cover less than 1% of the slopes in the landmasses, and systematic information on the type, abundance, and distribution of landslides is lacking. Preparing landslide maps is important to document the extent of landslide phenomena in a region, to investigate the distribution, types, pattern, recurrence and statistics of slope failures, to determine landslide susceptibility, hazard, vulnerability and risk, and to study the evolution of landscapes dominated by mass-wasting processes. Conventional methods for the production of landslide maps rely chiefly on the visual interpretation of stereoscopic aerial photography, aided by field surveys. These methods are time consuming and resource intensive. New and emerging techniques based on satellite, airborne, and terrestrial remote sensing technologies, promise to facilitate the production of landslide maps, reducing the time and resources required for their compilation and systematic update. In this work, we first outline the principles for landslide mapping, and we review the conventional methods for the preparation of landslide maps, including geomorphological, event, seasonal, and multi-temporal inventories. Next, we examine recent and new technologies for landslide mapping, considering (i) the exploitation of very-high resolution digital elevation models to analyze surface morphology, (ii) the visual interpretation and semi-automatic analysis of different types of satellite images, including panchromatic, multispectral, and synthetic aperture radar images, and (iii) tools that facilitate landslide field mapping. Next, we discuss the advantages and the limitations of the new remote sensing data and technology for the production of geomorphological, event, seasonal, and multi-temporal inventory maps. We conclude by arguing that the new tools will help to improve the quality of landslide maps, with positive effects on all derivative products and analyses, including erosion studies and landscape modeling, susceptibility and hazard assessments, and risk evaluations.
0
Paper
Citation1,620
0
Save
0

Optimal landslide susceptibility zonation based on multiple forecasts

Mauro Rossi et al.Jul 9, 2009
Environmental and multi-temporal landslide information for an area in Umbria, Italy, was exploited to produce four single and two combined landslide susceptibility zonations. The 78.9 km2 study area was partitioned in 894 slope units, and the single susceptibility zonations were obtained through linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression (LR), and by training a neural network (NN). The presence or absence of landslides in the slope units in the period from pre-1941 to 1996 (training set) was used as the dependent variable for the terrain classification. Next, adopting a regression approach, two "optimal" combinations of the four single zonations were prepared. The single and the combined zonations were tested against landslides in the 9-year period from 1997 to 2005 (validation set). Different metrics were used to evaluate the quality of the susceptibility zonations, including degree of model fit, uncertainty in the probability estimates, and model prediction skills. These metrics showed that the degree of model fit was not a good indicator of the model forecasting skills. Zonations obtained through classical multivariate classification techniques (LDA, QDA and LR) produced superior predictions when compared to the NN model, that over fitted the landslide information in the training set. LDA and LR produced less uncertain zonations than QDA and NN. The combined models resulted in a reduced number of errors and in less uncertain predictions; an important result that suggests that the combination of landslide susceptibility zonations can provide "optimal" susceptibility assessments.
0
Paper
Citation348
0
Save
0

The Influence of Land Use Change on Landslide Susceptibility Zonation: The Briga Catchment Test Site (Messina, Italy)

Paola Reichenbach et al.Aug 27, 2014
The spatial distribution of landslides is influenced by different climatic conditions and environmental settings including topography, morphology, hydrology, lithology, and land use. In this work, we have attempted to evaluate the influence of land use change on landslide susceptibility (LS) for a small study area located in the southern part of the Briga catchment, along the Ionian coast of Sicily (Italy). On October 1, 2009, the area was hit by an intense rainfall event that triggered abundant slope failures and resulted in widespread erosion. After the storm, an inventory map showing the distribution of pre-event and event landslides was prepared for the area. Moreover, two different land use maps were developed: the first was obtained through a semi-automatic classification of digitized aerial photographs acquired in 1954, the second through the combination of supervised classifications of two recent QuickBird images. Exploiting the two land use maps and different land use scenarios, LS zonations were prepared through multivariate statistical analyses. Differences in the susceptibility models were analyzed and quantified to evaluate the effects of land use change on the susceptibility zonation. Susceptibility maps show an increase in the areal percentage and number of slope units classified as unstable related to the increase in bare soils to the detriment of forested areas.
0
Paper
Citation247
0
Save
0

Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future

Alessandro Mondini et al.Mar 1, 2021
Landslides are geomorphological processes that shape the landscapes of all continents, dismantling mountains and contributing sediments to the river networks. Caused by geophysical and meteorological triggers, including intense or prolonged rainfall, seismic shaking, volcanic activity, and rapid snow melting, landslides pose a serious threat to people, property, and the environment in many areas. Given their abundance and relevance, investigators have long experimented with techniques and tools for landslide detection and mapping using primarily aerial and satellite optical imagery interpreted visually, or processed by semi-automatic or automatic procedures or algorithms. Optical (passive) sensors have known limitations due to their inability to capture Earth surface images through the clouds and to work in the absence of daylight. The alternatives are active, "all-weather" and "day-and-night", microwave radar sensors capable of seeing through the clouds and working in presence and absence of daylight. We review the literature on the use of Synthetic Aperture Radar (SAR) imagery to detect and map landslide failures – i.e., the single most significant movement episodes in the history of a landslide – and of landslide failure events – i.e., populations of landslides in areas ranging from a few to several thousand square kilometres caused by a single trigger. We examine 54 articles published in representative journals presenting 147 case studies in 32 nations, in all continents, except Antarctica. Analysis of the geographical location of 70 study areas shows that SAR imagery was used to detect and map landslides in most morphological, geological, seismic, meteorological, climate, and land cover settings. The time history of the case studies reveals the increasing interest of the investigators in the use of SAR imagery for landslide detection and mapping, with less than one article per year from 1995 to 2011, rising to about 5 articles per year between 2012 and 2020, and an average period of about 4.2 years between the launch of a satellite and the publication of an article using imagery taken by the satellite. To detect and map landslides, investigators use a common framework that exploits the phase and the amplitude of the electromagnetic return signal recorded in the SAR images, to measure terrain surface properties and their changes. To discriminate landslides from the surrounding stable terrain, a classification of the ground properties is executed by expert visual (heuristic) interpretation, or through numerical (statistical) modelling approaches. Despite undisputed progress over the last 26 years, challenges remain to be faced for the effective use of SAR imagery for landslide detection and mapping. In the article, we examine the theoretical, research, and operational frameworks for the exploitation of SAR images for landslide detection and mapping, and we provide a perspective for future applications considering the existing and the planned SAR satellite missions.
0
Paper
Citation191
0
Save