PB
Pablo Beato
Author with expertise in Catalytic Nanomaterials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(50% Open Access)
Cited by:
4,388
h-index:
45
/
i10-index:
93
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia

Ton Janssens et al.Mar 19, 2015
For the first time, the standard and fast selective catalytic reduction (SCR) of NO by NH3 are described in a complete catalytic cycle that is able to produce the correct stoichiometry while allowing adsorption and desorption of stable molecules only. The standard SCR reaction is a coupling of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided into an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore, both NO and NH3 are required in the reduction, and finally, oxidation by NO + O2 or NO2 leads to the same state of the catalyst. These points are shown experimentally for a Cu-CHA catalyst by combining in situ X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and Fourier transform infrared spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The activation energy calculated by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate-determining for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible influence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR while being a poor catalyst for NO oxidation to NO2.
0

Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction

Elisa Borfecchia et al.Oct 13, 2014
Cu-SSZ-13 is a highly active NH3-SCR catalyst for the abatement of harmful nitrogen oxides (NO x , x = 1, 2) from the exhausts of lean-burn engines. The study of Cu-speciation occurring upon thermal dehydration is a key step for the understanding of the enhanced catalytic properties of this material and for identifying the SCR active sites and their redox capability. Herein, we combined FTIR, X-ray absorption (XAS) and emission (XES) spectroscopies with DFT computational analysis to elucidate the nature and location of the most abundant Cu sites in the activated catalyst. Different Cu species have been found to be dominant as a function of the dehydration temperature and conditions. Data analysis revealed that the dehydration process of Cu cations is essentially completed at 250 °C, with the formation of dehydrated [CuOH]+ species hosted in close proximity to 1-Al sites in both d6r and 8r units of the SSZ-13 matrix. These species persist at higher temperatures only if a certain amount of O2 is present in the gas feed, while under inert conditions they undergo virtually total "self-reduction" as a consequence of an OH extra-ligand loss, resulting in bi-coordinated bare Cu+ cations. Synchrotron characterization supported by computational analysis allowed an unprecedented quantitative refinement of the local environment and structural parameters of these Cu(ii) and Cu(i) species.
0

Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios

Filippo Giordanino et al.Jan 1, 2013
Cu-SSZ-13 has been characterized by different spectroscopic techniques and compared with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios and prepared by the same ion exchange procedure. On vacuum activated samples, low temperature FTIR spectroscopy allowed us to appreciate a high concentration of reduced copper centres, i.e. isolated Cu(+) ions located in different environments, able to form Cu(+)(N2), Cu(+)(CO)n (n = 1, 2, 3), and Cu(+)(NO)n (n = 1, 2) upon interaction with N2, CO and NO probe molecules, respectively. Low temperature FTIR, DRUV-Vis and EPR analysis on O2 activated samples revealed the presence of different Cu(2+) species. New data and discussion are devoted to (i) [Cu-OH](+) species likely balanced by one framework Al atom; (ii) mono(μ-oxo)dicopper [Cu2(μ-O)](2+) dimers observed in Cu-ZSM-5 and Cu-β, but not in Cu-SSZ-13. UV-Vis-NIR spectra of O2 activated samples reveal an intense and finely structured d-d quadruplet, unique to Cu-SSZ-13, which is persistent under SCR conditions. This differs from the 22,700 cm(-1) band of the mono(μ-oxo)dicopper species of the O2 activated Cu-ZSM-5, which disappears under SCR conditions. The EPR signal intensity sets Cu-β apart from the others.
0

Methane to Methanol: Structure–Activity Relationships for Cu-CHA

Dimitrios Pappas et al.Sep 25, 2017
Cu-exchanged zeolites possess active sites that are able to cleave the C–H bond of methane at temperatures ≤200 °C, enabling its selective partial oxidation to methanol. Herein we explore this process over Cu-SSZ-13 materials. We combine activity tests and X-ray absorption spectroscopy (XAS) to thoroughly investigate the influence of reaction parameters and material elemental composition on the productivity and Cu speciation during the key process steps. We find that the CuII moieties responsible for the conversion are formed in the presence of O2 and that high temperature together with prolonged activation time increases the population of such active sites. We evidence a linear correlation between the reducibility of the materials and their methanol productivity. By optimizing the process conditions and material composition, we are able to reach a methanol productivity as high as 0.2 mol CH3OH/mol Cu (125 μmol/g), the highest value reported to date for Cu-SSZ-13. Our results clearly demonstrate that high populations of 2Al Z2CuII sites in 6r, favored at low values of both Si:Al and Cu:Al ratios, inhibit the material performance by being inactive for the conversion. Z[CuIIOH] complexes, although shown to be inactive, are identified as the precursors to the methane-converting active sites. By critical examination of the reported catalytic and spectroscopic evidence, we propose different possible routes for active-site formation.
0
Citation307
0
Save