PM
Paul Meredith
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(64% Open Access)
Cited by:
6,510
h-index:
69
/
i10-index:
219
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells

Martin Stolterfoht et al.Jul 25, 2018
The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pin-type perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (VOC) of the complete cell to ~1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm2 perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high VOC (1.17 V) and record fill factor (>81%). Non-radiative recombination is a critical limiting factor for perovskite solar cell performance. Stolterfoht et al. visualize the various recombination pathways in planar pin cells with photoluminescence imaging and use it to design improved solar cells with 1 cm2 areas and ~20% efficiency.
0

Organic Photodiodes: The Future of Full Color Detection and Image Sensing

Ross Vuuren et al.Apr 25, 2016
Major growth in the image sensor market is largely as a result of the expansion of digital imaging into cameras, whether stand-alone or integrated within smart cellular phones or automotive vehicles. Applications in biomedicine, education, environmental monitoring, optical communications, pharmaceutics and machine vision are also driving the development of imaging technologies. Organic photodiodes (OPDs) are now being investigated for existing imaging technologies, as their properties make them interesting candidates for these applications. OPDs offer cheaper processing methods, devices that are light, flexible and compatible with large (or small) areas, and the ability to tune the photophysical and optoelectronic properties - both at a material and device level. Although the concept of OPDs has been around for some time, it is only relatively recently that significant progress has been made, with their performance now reaching the point that they are beginning to rival their inorganic counterparts in a number of performance criteria including the linear dynamic range, detectivity, and color selectivity. This review covers the progress made in the OPD field, describing their development as well as the challenges and opportunities.
0

Filterless narrowband visible photodetectors

Qianqian Lin et al.Sep 14, 2015
Wavelength-selective light detection is crucial for many applications, including imaging and machine vision. Narrowband spectral responses are required for colour discrimination, and current systems use broadband photodiodes combined with optical filters. This approach increases the architectural complexity and limits the quality of colour sensing. Here we report a method for tuning the spectral response to give filterless, narrowband red, green and blue photodiodes. The devices have simple planar junction architectures with the photoactive layer being a solution-processed mixture of either an organohalide perovskite or lead halide semiconductor and an organic (macro)molecule. The organic (macro)molecules modify the optical and electrical properties of the photodiode and facilitate charge collection narrowing of the device's external quantum efficiency. These red, green and blue photodiodes all possess full-width at half-maxima of <100 nm and performance metrics suitable for many imaging applications. Photodiodes with an intrinsic narrow spectral response make it possible to discriminate between red, green and blue light without the need for any optical filters.
0

Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation

Mengmeng Hao et al.Jan 20, 2020
The mixed caesium and formamidinium lead triiodide perovskite system (Cs1−xFAxPbI3) in the form of quantum dots (QDs) offers a pathway towards stable perovskite-based photovoltaics and optoelectronics. However, it remains challenging to synthesize such multinary QDs with desirable properties for high-performance QD solar cells (QDSCs). Here we report an effective oleic acid (OA) ligand-assisted cation-exchange strategy that allows controllable synthesis of Cs1−xFAxPbI3 QDs across the whole composition range (x = 0–1), which is inaccessible in large-grain polycrystalline thin films. In an OA-rich environment, the cross-exchange of cations is facilitated, enabling rapid formation of Cs1−xFAxPbI3 QDs with reduced defect density. The hero Cs0.5FA0.5PbI3 QDSC achieves a certified record power conversion efficiency (PCE) of 16.6% with negligible hysteresis. We further demonstrate that the QD devices exhibit substantially enhanced photostability compared with their thin-film counterparts because of suppressed phase segregation, and they retain 94% of the original PCE under continuous 1-sun illumination for 600 h. Mixed-cation perovskite quantum dot solar cells possess decent phase stability but considerably low efficiency. Here Hao et al. show that ligands are key to the formation of quantum dots with lower defect density and demonstrate devices that are more stable and efficient than their bulk counterparts.
0
Paper
Citation468
0
Save
0

Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes

Ardalan Armin et al.Feb 27, 2015
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors. There is a growing interest in the development of narrowband photodiodes for full-color imaging and visible-blind near-infrared detection. Armin et al.show a sub-100 nm response by tuning the spectral bandwidth through regulating the charge collection efficiency in a thick organic bulk heterojunction.
0

A History and Perspective of Non‐Fullerene Electron Acceptors for Organic Solar Cells

Ardalan Armin et al.Jan 14, 2021
Abstract Organic solar cells are composed of electron donating and accepting organic semiconductors. Whilst a significant palette of donors has been developed over three decades, until recently only a small number of acceptors have proven capable of delivering high power conversion efficiencies. In particular the fullerenes have dominated the landscape. In this perspective, the emergence of a family of materials–the non‐fullerene acceptors (NFAs) is described. These have delivered a discontinuous advance in cell efficiencies, with the significant milestone of 20% now in sight. Intensive international efforts in synthetic chemistry have established clear design rules for molecular engineering enabling an ever‐expanding number of high efficiency candidates. However, these materials challenge the accepted wisdom of how organic solar cells work and force new thinking in areas such as morphology, charge generation and recombination. This perspective provides a historical context for the development of NFAs, and also addresses current thinking in these areas plus considers important manufacturability criteria. There is no doubt that the NFAs have propelled organic solar cell technology to the efficiencies necessary for a viable commercial technology–but how far can they be pushed, and will they also deliver on equally important metrics such as stability?
0
Paper
Citation395
0
Save
Load More