PK
Philip Klement
Author with expertise in Two-Dimensional Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
3,253
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions

Jason Ross et al.Mar 9, 2014
The development of light-emitting diodes with improved efficiency, spectral properties, compactness and integrability is important for lighting, display, optical interconnect, logic and sensor applications1,2,3,4,5,6,7,8. Monolayer transition-metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties9,10,11,12,13,14,15,16. Electroluminescence has already been observed from monolayer MoS2 devices17,18. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of the MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p–n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and, combined with the high optical quality of WSe2, yields bright electroluminescence with 1,000 times smaller injection current and 10 times smaller linewidth than in MoS2 (refs 17,18). Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged and neutral excitons. This system has the required ingredients for new types of optoelectronic device, such as spin- and valley-polarized light-emitting diodes, on-chip lasers and two-dimensional electro-optic modulators. Bright and electrostatically tunable electroluminescence from monolayer WSe2 p–n junctions is reported.
0

Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2

Aaron Jones et al.Jan 3, 2014
Monolayer and few-layer materials present interesting spin and pseudospin states. A study of the coupling between spin, valley and layer degrees of freedom in bilayer WSe2 reveals coherent superpositions of distinct valley configurations and suggests the possibility of electrical control of the spin states. Coupling degrees of freedom of distinct nature plays a critical role in numerous physical phenomena1,2,3,4,5,6,7,8,9,10. The recent emergence of layered materials11,12,13 provides a laboratory for studying the interplay between internal quantum degrees of freedom of electrons14,15. Here we report new coupling phenomena connecting real spin with layer pseudospins in bilayer WSe2. In polarization-resolved photoluminescence measurements, we observe large spin orientation of neutral and charged excitons by both circularly and linearly polarized excitation, with the trion spectrum splitting into a doublet at large vertical electrical field. These observations can be explained as a locking of spin and layer pseudospin in a given valley15, where the doublet implies an electrically induced spin splitting. The observed distinctive behaviour of the trion doublet under polarized excitation further provides spectroscopic evidence of interlayer and intralayer trion species, a promising step towards optical manipulation in van der Waals heterostructures16 through interlayer excitons.
0

Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD

Oliver Maßmeyer et al.May 25, 2024
Abstract Two‐dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials’ properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar‐blind photodiodes and light‐emitting diodes as applications. However, achieving commercial viability requires wafer‐scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one‐step synthesis of 2D GaS is introduced via metal–organic chemical vapor deposition on sapphire substrates. The pulsed‐mode deposition of industry‐standard precursors promotes 2D growth by inhibiting the vapor phase and on‐surface pre‐reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin‐film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.