KC
Katrin Chua
Author with expertise in Role of Sirtuins in Health and Aging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(86% Open Access)
Cited by:
12,120
h-index:
42
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice

Hwei-Ling Cheng et al.Sep 5, 2003
SIRT1 is a mammalian homolog of the Saccharomyces cerevisiae chromatin silencing factor Sir2. Dominant-negative and overexpression studies have implicated a role for SIRT1 in deacetylating the p53 tumor suppressor protein to dampen apoptotic and cellular senescence pathways. To elucidate SIRT1 function in normal cells, we used gene-targeted mutation to generate mice that express either a mutant SIRT1 protein that lacks part of the catalytic domain or has no detectable SIRT1 protein at all. Both types of SIRT1 mutant mice and cells had essentially the same phenotypes. SIRT1 mutant mice were small, and exhibited notable developmental defects of the retina and heart, and only infrequently survived postnatally. Moreover, SIRT1-deficient cells exhibited p53 hyperacetylation after DNA damage and increased ionizing radiation-induced thymocyte apoptosis. In SIRT1-deficient embryonic fibroblasts, however, p53 hyperacetylation after DNA damage was not accompanied by increased p21 protein induction or DNA damage sensitivity. Together, our observations provide direct evidence that endogenous SIRT1 protein regulates p53 acetylation and p53-dependent apoptosis, and show that the function of this enzyme is required for specific developmental processes.
0
Citation1,072
0
Save
0

SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin

Eriko Michishita et al.Mar 1, 2008
The Sir2 family member SIRT6 is an NAD-dependent, histone H3 lysine 9 deacetylase enzyme that modulates telomeric chromatin and is required for stable association of WRN, the factor that is mutated in Werner Syndrome. The Sir2 deacetylase regulates chromatin silencing and lifespan in Saccharomyces cerevisiae1,2. In mice, deficiency for the Sir2 family member SIRT6 leads to a shortened lifespan and a premature ageing-like phenotype3. However, the molecular mechanisms of SIRT6 function are unclear. SIRT6 is a chromatin-associated protein3, but no enzymatic activity of SIRT6 at chromatin has yet been detected, and the identity of physiological SIRT6 substrates is unknown. Here we show that the human SIRT6 protein is an NAD+-dependent, histone H3 lysine 9 (H3K9) deacetylase that modulates telomeric chromatin. SIRT6 associates specifically with telomeres, and SIRT6 depletion leads to telomere dysfunction with end-to-end chromosomal fusions and premature cellular senescence. Moreover, SIRT6-depleted cells exhibit abnormal telomere structures that resemble defects observed in Werner syndrome, a premature ageing disorder4,5. At telomeric chromatin, SIRT6 deacetylates H3K9 and is required for the stable association of WRN, the factor that is mutated in Werner syndrome4,5. We propose that SIRT6 contributes to the propagation of a specialized chromatin state at mammalian telomeres, which in turn is required for proper telomere metabolism and function. Our findings constitute the first identification of a physiological enzymatic activity of SIRT6, and link chromatin regulation by SIRT6 to telomere maintenance and a human premature ageing syndrome.
0
Citation1,036
0
Save
0

ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression

Xiaobing Shi et al.May 21, 2006
Four papers in this issue tackle the hot topic of chromatin remodelling, specifically, how methyl marks on chromatin are 'read' by the proteins that interact with them. Two report on BPTF (bromodomain and PHD domain transcription factor), a subunit of NURF, the nucleosome remodelling factor. It contains a domain known as a PHD finger, which is shown to bind to histone H3 trimethylated at lysine 4 (H3K4) and to maintain proper activity at developmentally critical HOX genes. The accompanying structural study of the complex explains how the site specificity for H3K4 is achieved. The two other papers reveal that the PHD domain of tumour suppressor ING2 also recognizes trimethylated H3K4, and link the histone mark to repression of transcription. The four papers together establish certain PHD finger domains as previously unrecognized chromatin-binding modules. In a News and Views piece, Peter B. Becker discusses what these papers tell us about the function of the chemical modifications of histone tails. One of four papers establishing certain PHD domains as effectors of trimethylated histone H3K4, a chromatin mark generally associated with active transcription. The interaction between H3K4me3 and the ING2 PHD domain is enhanced after DNA damage, recruiting the repressive complex to the promoters of proliferation genes. Dynamic regulation of diverse nuclear processes is intimately linked to covalent modifications of chromatin1,2. Much attention has focused on methylation at lysine 4 of histone H3 (H3K4), owing to its association with euchromatic genomic regions3,4. H3K4 can be mono-, di- or tri-methylated. Trimethylated H3K4 (H3K4me3) is preferentially detected at active genes, and is proposed to promote gene expression through recognition by transcription-activating effector molecules5. Here we identify a novel class of methylated H3K4 effector domains—the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins. The ING PHD domains are specific and highly robust binding modules for H3K4me3 and H3K4me2. ING2, a native subunit of a repressive mSin3a–HDAC1 histone deacetylase complex6, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a–HDAC1 complex at the promoters of proliferation genes. This pathway constitutes a new mechanism by which H3K4me3 functions in active gene repression. Furthermore, ING2 modulates cellular responses to genotoxic insults, and these functions are critically dependent on ING2 interaction with H3K4me3. Together, our findings establish a pivotal role for trimethylation of H3K4 in gene repression and, potentially, tumour suppressor mechanisms.
0
Citation908
0
Save
0

SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation

Matthew Barber et al.May 4, 2012
SIRT7 is an H3K18Ac-selective deacetylase that has a pivotal role in chromatin regulation, maintenance of cellular transformation programs and tumour formation in vivo. The mammalian sirtuin protein SIRT7 has been linked to the transcription of ribosomal RNA but, unlike other known human sirtuins, its substrates and physiological function are not clear. This paper reports an enzyme activity for SIRT7 and provides several strands of evidence linking SIRT7 activity to the maintenance of fundamental cancer-cell phenotypes and tumour progression. SIRT7 acts as a histone deacetylase specific for H3 lysine 18, and promotes transcriptional repression. SIRT7 target genes have links to tumour suppression, and the oncogenic transcription factor ELK4 can recruit SIRT7 to target promoters. SIRT7 is required for the maintenance of cellular transformation and tumour growth in mice. Sirtuin proteins regulate diverse cellular pathways that influence genomic stability, metabolism and ageing1,2. SIRT7 is a mammalian sirtuin whose biochemical activity, molecular targets and physiological functions have been unclear. Here we show that SIRT7 is an NAD+-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase that stabilizes the transformed state of cancer cells. Genome-wide binding studies reveal that SIRT7 binds to promoters of a specific set of gene targets, where it deacetylates H3K18Ac and promotes transcriptional repression. The spectrum of SIRT7 target genes is defined in part by its interaction with the cancer-associated E26 transformed specific (ETS) transcription factor ELK4, and comprises numerous genes with links to tumour suppression. Notably, selective hypoacetylation of H3K18Ac has been linked to oncogenic transformation, and in patients is associated with aggressive tumour phenotypes and poor prognosis3,4,5,6. We find that deacetylation of H3K18Ac by SIRT7 is necessary for maintaining essential features of human cancer cells, including anchorage-independent growth and escape from contact inhibition. Moreover, SIRT7 is necessary for a global hypoacetylation of H3K18Ac associated with cellular transformation by the viral oncoprotein E1A. Finally, SIRT7 depletion markedly reduces the tumorigenicity of human cancer cell xenografts in mice. Together, our work establishes SIRT7 as a highly selective H3K18Ac deacetylase and demonstrates a pivotal role for SIRT7 in chromatin regulation, cellular transformation programs and tumour formation in vivo.
0
Citation544
0
Save
0

Mice Lacking Histone Deacetylase 6 Have Hyperacetylated Tubulin but Are Viable and Develop Normally

Yu Zhang et al.Jan 8, 2008
Posttranslational modifications play important roles in regulating protein structure and function. Histone deacetylase 6 (HDAC6) is a mostly cytoplasmic class II HDAC, which has a unique structure with two catalytic domains and a domain binding ubiquitin with high affinity. This enzyme was recently identified as a multisubstrate protein deacetylase that can act on acetylated histone tails, alpha-tubulin and Hsp90. To investigate the in vivo functions of HDAC6 and the relevance of tubulin acetylation/deacetylation, we targeted the HDAC6 gene by homologous recombination in embryonic stem cells and generated knockout mice. HDAC6-deficient mice are viable and fertile and show hyperacetylated tubulin in most tissues. The highest level of expression of HDAC6 is seen in the testis, yet development and function of this organ are normal in the absence of HDAC6. Likewise, lymphoid development is normal, but the immune response is moderately affected. Furthermore, the lack of HDAC6 results in a small increase in cancellous bone mineral density, indicating that this deacetylase plays a minor role in bone biology. HDAC6-deficient mouse embryonic fibroblasts show apparently normal microtubule organization and stability and also show increased Hsp90 acetylation correlating with impaired Hsp90 function. Collectively, these data demonstrate that mice survive well without HDAC6 and that tubulin hyperacetylation is not detrimental to normal mammalian development.
Load More