ZM
Zhiwei Ma
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
713
h-index:
26
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pressure-induced emission of cesium lead halide perovskite nanocrystals

Zhiwei Ma et al.Oct 23, 2018
Abstract Metal halide perovskites (MHPs) are of great interest for optoelectronics because of their high quantum efficiency in solar cells and light-emitting devices. However, exploring an effective strategy to further improve their optical activities remains a considerable challenge. Here, we report that nanocrystals (NCs) of the initially nonfluorescent zero-dimensional (0D) cesium lead halide perovskite Cs 4 PbBr 6 exhibit a distinct emission under a high pressure of 3.01 GPa. Subsequently, the emission intensity of Cs 4 PbBr 6 NCs experiences a significant increase upon further compression. Joint experimental and theoretical analyses indicate that such pressure-induced emission (PIE) may be ascribed to the enhanced optical activity and the increased binding energy of self-trapped excitons upon compression. This phenomenon is a result of the large distortion of [PbBr 6 ] 4− octahedral motifs resulting from a structural phase transition. Our findings demonstrate that high pressure can be a robust tool to boost the photoluminescence efficiency and provide insights into the relationship between the structure and optical properties of 0D MHPs under extreme conditions.
0

Pressure Effects on Structure and Optical Properties in Cesium Lead Bromide Perovskite Nanocrystals

Guanjun Xiao et al.Jul 6, 2017
Metal halide perovskites (MHPs) are gaining increasing interest because of their extraordinary performance in optoelectronic devices and solar cells. However, developing an effective strategy for achieving the band-gap engineering of MHPs that will satisfy the practical applications remains a great challenge. In this study, high pressure is introduced to tailor the optical and structural properties of MHP-based cesium lead bromide nanocrystals (CsPbBr3 NCs), which exhibit excellent thermodynamic stability. Both the pressure-dependent steady-state photoluminescence and absorption spectra experience a stark discontinuity at ∼1.2 GPa, where an isostructural phase transformation regarding the Pbnm space group occurs. The physical origin points to the repulsive force impact due to the overlap between the valence electron charge clouds of neighboring layers. Simultaneous band-gap narrowing and carrier-lifetime prolongation of CsPbBr3 trihalide perovskite NCs were also achieved as expected, which facilitates the broader solar spectrum absorption for photovoltaic applications. Note that the values of the phase change interval and band-gap red-shift of CsPbBr3 nanowires are between those for CsPbBr3 nanocubes and the corresponding bulk counterparts, which results from the unique geometrical morphology effect. First-principles calculations unravel that the band-gap engineering is governed by orbital interactions within the inorganic Pb-Br frame through structural modification. Changes of band structures are attributed to the synergistic effect of pressure-induced modulations of the Br-Pb bond length and Pb-Br-Pb bond angle for the PbBr6 octahedral framework. Furthermore, the significant distortion of the lead-bromide octahedron to accommodate the Jahn-Teller effect at much higher pressure would eventually lead to a direct to indirect band-gap electronic transition. This study enables high pressure as a robust tool to control the structure and band gap of CsPbBr3 NCs, thus providing insight into the microscopic physiochemical mechanism of these compressed MHP nanosystems.
0
Paper
Citation239
0
Save
0

PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins

Yongjia Duan et al.Aug 20, 2018
Mutations in RNA-binding proteins localized in ribonucleoprotein (RNP) granules, such as hnRNP A1 and TDP-43, promote aberrant protein aggregations, which are pathological hallmarks in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Protein posttranslational modifications (PTMs) are known to regulate RNP granules. In this study, we investigate the function of PARylation, an important PTM involved in DNA damage repair and cell death, in RNP-related neurodegeneration. We reveal that PARylation levels are a major regulator of the dynamic assembly-disassembly of RNP granules, and the disease-related RNPs such as hnRNP A1 and TDP-43 can both be PARylated and bind to PARylated proteins. We further identify the PARylation site of hnRNP A1 at K298, which controls the cytoplasmic translocation of hnRNP A1 in response to stress, as well as the PAR-binding motif (PBM) of hnRNP A1, which is required for the delivery and association of hnRNP A1 to stress granules. Moreover, we show that PAR not only dramatically enhances the liquid-liquid phase separation of hnRNP A1, but also promotes the co-phase separation of hnRNP A1 and TDP-43 in vitro and their interaction in vivo. Finally, we establish that both genetic and pharmacological inhibition of PARP mitigates hnRNP A1 and TDP-43-mediated neurotoxicity in cell and Drosophila models of ALS. Together, our findings indicate a novel and crucial role of PARylation in regulating the assembly and the dynamics of RNP granules, and dysregulation of PARylation may contribute to ALS disease pathogenesis.
0

Three Birds with One Stone: Construction of Highly Efficient Interfaces via Ammonium Sulfamate Doping SnO2

Li Yu et al.Jan 15, 2025
Interface engineering plays a crucial part in optimizing the device performance in perovskite solar cells (PSCs). Herein, ammonium sulfamate (ASA) is introduced as a multifunctional additive into SnO 2 electron transport layer (ETL) with a “three birds with one stone” strategy. At first, the oxygen vacancy and hydroxyl ligand on the surface of SnO 2 nanoparticles causing charge recombination is efficiently reduced by incorporating ASA into SnO 2 colloidal dispersion. Second, the coordination bond of SO 3 − anion in ASA with SnO 2 and the interaction between NH 2 in ASA with Pb 2+ construct a chemical bridging at the interface of ETL/perovskite. It significantly enhances the interfacial electron transport. Third, the introduction of ASA is conducive to form high‐quality perovskite films with larger crystallite size and improved crystallinity due to the optimization of buried interface. Consequently, by the integrated effects on both interfaces and the bulk, the ASA‐based device delivers an increased efficiency from 20.73% to 24.41%. Moreover, the ASA optimized device displays a remarkable retention of over 90% of its original power conversion efficiency after 1000 h under a controlled N 2 atmosphere, demonstrating the stability is significantly enhanced.